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An energy conserving set of the fully electromagnetic nonlinear gyrokinetic Vlasov equation and
Maxwell’s equations, which is applicable to both L-mode turbulence with large amplitude and
H-mode turbulence in the presence of high E�B shear has been derived. The phase-space action
variational Lie perturbation method ensures the preservation of the conservation laws of the
underlying Vlasov–Maxwell system. Generalized ordering takes �i���i�LE�Lp�R �here �i is the
thermal ion Larmor radius and ��i=B / �B��i��, as typically observed in the tokamak H-mode edge,
with LE and Lp being the radial electric field and pressure gradient lengths. k��i�1 is assumed for
generality, and the relative fluctuation amplitudes e�� /Ti��B /B are kept up to the second order.
Extending the electrostatic theory in the presence of high E�B shear �Hahm, Phys. Plasmas 3,
4658 �1996��, contributions of electromagnetic fluctuations to the particle charge density and current
are explicitly evaluated via pullback transformation from the gyrocenter distribution function in the
gyrokinetic Maxwell’s equation. © 2009 American Institute of Physics.
�DOI: 10.1063/1.3073671�

I. INTRODUCTION

Understanding tokamak microturbulence is required for
developing a predictive capability of tokamak transport. The
nonlinear gyrokinetic formulations1–7 have provided theoret-
ical foundations for recent advances in nonlinear gyrokinetic
simulations of tokamak microturbulence. Both formulations
and simulations have traditionally focused on tokamak core
turbulence in which the fluctuation amplitude is relatively
small, i.e., less than or comparable to �n /n0�10−2 and the
gradients in macroscopic parameters, such as, pressure are
relatively mild.8

As experience in enhancing tokamak confinement9–13 ac-
cumulates, for instance, by H-mode operation, tokamak edge
plasmas became hotter and less collisional. Therefore, tradi-
tional edge turbulence simulations14–16 based on Braginskii-
type fluid equations are not strictly applicable in some of the
leading tokamaks in the present and future. For more accu-
rate simulations of such collisionless edge plasmas, kinetic
effects associated with long mean free path and finite orbit
sizes should be included properly. However, the following
obvious challenges must be faced when one tries to apply the
existing nonlinear gyrokinetic formalism derived mainly for
core turbulence:

i� Fluctuation amplitudes in L-mode edge plasmas are
typically on the order of �n /n0�10−1 inside the last closed
flux surface �LCFS�,17,18 and can be even higher in the scrape
off layer �SOL�.19–22

ii� After an H-mode transition, Er well is formed just
inside the LCFS. The pressure gradient scale length and the
radial electric field scale length in the edge Er well is on the

order of the ion poloidal gyroradius,23 ��i�vTiMc / �eB��.
iii� Not only in H-mode plasmas, but also in some

L-mode plasmas, we have �i /Lp�Lp /R0 at the edge. Since �i

is a typical unit for the radial scale of microturbulence, and
Lp is a length scale of a macroscopic quantity, we have an
intriguing situation where one of the primary smallness pa-
rameters �i /Lp in the conventional nonlinear gyrokinetic
formulation1 is greater than a ratio between two macroscopic
scale lengths.

In retrospect, many theoretically related issues have been
addressed in the context of nonlinear gyrokinetic equations
for core transport barriers.24 That work, however, only con-
sidered the electrostatic fluctuations. The present work pro-
vides an extension of the electrostatic nonlinear gyrokinetic
equations as presented in Ref. 24 to fully electromagnetic
edge turbulence in toroidal geometry, with an ordering appli-
cable to both large fluctuation amplitudes in L-mode and
residual fluctuations in the presence of strong E�B in
H-mode. It has been shown that the edge turbulence is elec-
tromagnetic even for low local values of plasma �.14,25 As
emphasized in the context of both theory26–32 and
experiments,10–13 E�B flow shear rather than plasma mass
flow shear of a particular species plays a more fundamental
role in reducing turbulence. It is also natural to deal with the
electromagnetic fields, E and B, rather than plasma flows, in
formulating the nonlinear gyrokinetic equations which are
based on the equations of motion for a single charged parti-
cle’s gyrocenter.

The emphasis in Ref. 24 was on a systematic description
of the collective phenomena �i.e., a self-consistent treatment
of turbulence� in which the Vlasov equation and the Max-
well’s equation are treated on an equal footing with variousa�Also at: Department of Physics, Peking University, Beijing 100871, China.
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terms explicitly derived from the general expressions, and
with an explicit expression for the total energy invariant
which can be used as an indicator of accuracy in numerical
simulations. This underlying philosophy followed those of
the early modern nonlinear gyrokinetic theories3–6 and a re-
cent review.7 It is noteworthy that the necessity of extending
nonlinear gyrokinetic formulations to edge turbulence in the
presence of flow shear has been widely recognized. Recent
publications based on the Lie perturbation theory including
Refs. 33–35 used the E�B flow, rather than the ion mass
flow, following the approach in Ref. 24. On the other hand,
the emphasis of Refs. 33 and 34 was mostly on a systematic
manifestation of modern nonlinear gyrokinetic theory in the
context of the language of differential geometry. Utilizing
noncanonical Hamiltonian theories of guiding center drifts,
including that by Littlejonhn,36–38 more drift terms, including
the polarization drift associated with a time-dependent back-
ground radial electric field, are kept in the gyrokinetic-
Vlasov equation. Reference 35 has shown that by adopting a
modified definition of the E�B flow, higher accuracy in the
guiding center drift can be achieved over the formulations in
Ref. 33. However, in those recent publications,33–35 the ex-
plicit form of the gyrokinetic Ampere’s law after the integra-
tions over velocity space for the electrical current has not
been derived. Furthermore, the total energy invariant extend-
ing that in Ref. 24 has not been derived to date for the elec-
tromagnetic case. The progress in nonlinear gyrokinetic for-
mulations with flows in tokamak geometry via the Lie
perturbation method is summarized in Table I.

In this paper, an energy-conserving and phase-space vol-
ume conserving set of the fully electromagnetic nonlinear
gyrokinetic Vlasov equation and Maxwell’s equation, which
is applicable to tokamak edge turbulence, is derived. These
conservation properties become more important as long term
gyrokinetic simulations well beyond the nonlinear saturation

phase are being pursued with recent advances in computa-
tional power.39

The principal results of this paper are as follows:

i� An energy-conserving set of the fully electromagnetic
nonlinear gyrokinetic Vlasov and Maxwell’s equa-
tions is derived for the first time in the presence of
strong E�B flow shear. Symplectic derivation via
phase-space Lagrangian Lie-perturbation theory en-
sures the preservation of the conservation laws.

ii� Expressions for the gyrokinetic Maxwell equations
alongside corresponding energy invariants are pre-
sented for practically useful limiting cases, i.e., the
long wavelength limit and for a Maxwellian distribu-
tion in 	.

iii� In particular, various contributions of both shear-
Alfvénic ��A�� and compressional ��B�� electromag-
netic fluctuations to the gyrokinetic Poisson equation
and the gyrokinetic Ampere’s law are explicitly evalu-
ated in the presence of strong E�B flow shear.

The remainder of this paper is organized as follows. In Sec.
II, the guiding-center motion in the presence of strong E
�B shear is presented. The gyrophase-independent Euler–
Lagrange equation for the gyrocenter drift in the presence of
the electromagnetic fluctuation is derived in Sec. III. In Sec.
IV, an energy conserving set of general gyrokinetic Vlasov–
Maxwell equations with strong E�B shear is derived. Their
limiting forms for long wavelength fluctuations and for a
Maxwellian distribution in 	 are also presented, respectively.
Major emphasis is placed on the rigorous and transparent
derivation of the most general result via the phase-space La-
grangian Lie-perturbation theory, and the explicit evaluation
of velocity moments involving the gyrocenter distribution
function which appear in the gyrokinetic Maxwell equations.

TABLE I. Progress in nonlinear gyrokinetic formulations in a torus with flows via Lie perturbation method.
Vacant slots indicate that the specific item has not been performed in that particular paper. Explicit evaluation
here means performing the integration over velocity space following the pullback transformation, for quantities
such as polarization density and magnetization terms. ES and EM stand for electrostatic and electromagnetic
fluctuations, respectively.

Brizard ’95a Hahm ’96b
Qin et al. ’06,c ’07d

Kawamura et al., ’08e This work

Characteristics of
fluctuations appearing
in the GK Vlasov equation

EM ES EM EM

Explicit evaluation of
GK Poisson’s equation

for ES for ES for EM

Explicit evaluation of
GK Ampere’s law

for EM

Expression for total
energy invariant

yes yes

aReference 48.
bReference 24.
cReference 33.
dReference 34.
eReference 35.
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II. GUIDING-CENTER DRIFT IN THE PRESENCE
OF STRONG EÃB FLOW SHEAR

In this section, we present the guiding-center equations
of motion in the presence of strong radial electric field shear
and steep pressure gradients as observed in most H-mode
edges. As emphasized in the previous work on the nonlinear
gyrokinetic equations in core transport barriers,24 a formula-
tion in terms of the radial electric field rather than in terms of
mass flow is preferred. Since the single particle’s guiding
center motion is determined by the electromagnetic field
rather than the mass flow, this choice is not only natural, but
also advantageous in separating the issue of determining the
equilibrium ion distribution function �which is also an impor-
tant issue at the tokamak edge in its own right40,41� from the
formulation of the nonlinear gyrokinetic equation for turbu-
lence. Neoclassical equilibrium, i.e., the distribution function
in the absence of the turbulence, in the steep pressure gradi-
ent edge region, can be calculated numerically as an input for
turbulence simulations.42–45 A massively parallel Monte
Carlo guiding center simulation could tabulate the distribu-
tion function in the 4D phase space. We focus only on the
issues involving turbulence in this paper without specifying
the equilibrium mass flow. This approach is thus conceptu-
ally simpler than previous nonlinear gyrokinetic formula-
tions in terms of the relative velocity in the frame moving
with the mass flow.46–49

The standard nonlinear gyrokinetic ordering1 consists of


/�i � �ik� � �B/B � e��/Ti � �

and

k��i � 1,

where 
 and � are the characteristic fluctuation frequency
and the ion cyclotron frequency, respectively; k� and k� are
the components of the wave vector in the parallel and per-
pendicular direction with respect to the magnetic field; �i

= �Ti /M�1/2 /�i is the thermal ion gyroradius; �� is the fluc-
tuating electrostatic potential; �B is the fluctuating magnetic
field; and ��1 is a small ordering parameter. A tokamak-
specific ordering, B� /B�rq /R�1, will be used in this work
to differentiate the poloidal gyroradius from the gyroradius.
Here, r /R is the local inverse aspect ratio, and q is the mag-
netic safety factor.

For a derivation of the unperturbed phase-space La-
grangian of a charged particle which is relevant for edge
plasma conditions including the H-mode state, it is useful to
summarize the following key experimental findings. A spon-
taneous H-mode transition9 starts with a rapid increase in the
negative radial electric field Er at the edge just inside the
LCFS. Well after the transition, a negative Er well is formed
and the steep ion pressure gradient in the same region be-
comes large. Quite often, it becomes the dominant contribu-
tor to Er in the radial force balance relation for the main ion
species,23,50,51 i.e., Er�1 / �niei��Pi /�r. For these plasmas,
the gradient lengths of Er and Pi are of the same order as the
ion poloidal gyroradius, i.e., LE�Lp���i. These conditions
correspond to uE

�0��−cEr /B�u*i�−�c /nieiB��Pi /�r

���i /Lp�vTi, and e�0� /Ti�1. While ��i /Lp�1, we can still

identify a small parameter for the unperturbed particle orbit
calculations in tokamak plasmas with large Er shear, except
for low aspect ratio experiments, such as, the National
Spherical Torus eXperiment �NSTX�,52

�E �
�i

LE
�

�i

Lp
�

B�

B
� 1. �1�

We note that �E is larger than the conventional small param-
eter �B for the unperturbed particle orbit calculations in the
absence of large Er shear,

�B �
�i

LB
� 1, �2�

where LB
−1�	�B /B�r	 originates from the inhomogeneity in

the equilibrium B field.
We will discuss the relation between �E and �B for our

problem shortly. Starting from the unperturbed phase-space
Lagrangian of a charged particle, one can perform Lie per-
turbation analysis as described in Refs. 6, 7, 24, 38, and 48,
to obtain the guiding-center phase-space Lagrangian,

�0 � 
 e

c
A + MuE + p�b� · dR +

	B

�
d� − H0dt . �3�

Here the notations follow mostly those used in Ref. 24. The
noncanonical guiding-center coordinates which simplify the
phase-space Lagrangian are used. R�x−�, 	 is the guiding-
center magnetic moment in the frame moving with uE�cb
�� /B,36 associated with the equilibrium potential . p� is
the guiding center parallel kinetic momentum which includes
the Banos drift,53 and � is the gyrophase angle. More detailed
discussions on the choice of guiding center variables can be
found in Ref. 6. On the right-hand side of Eq. �3�, the O��B�
term −	B /���e1 ·e2+ 1

2 �b ·��b�b� ·dR is ignored for sim-
plicity. The term 	�e1 ·e2 which depends on the choice of
perpendicular unit vectors e1 and e2, is related to a gyro-
gauge invariance.38 In Eq. �3�, the guiding-center Hamil-
tonian up to the order �E

2 is

H0 = e + 	B +
p�

2

2M
+

M

2
uE

2 +
	B

2�
b · � � uE, �4�

and 	b ·��uE��c	 /B���
2  describes the finite Larmor-

orbit-average reduction of the equilibrium potential.48 We
note that unlike typical core profiles, the tokamak edge pro-
files satisfy �i /Lp�Lp /R. Therefore, we assume �E

2 ��B.
In passing, we remark that the trapped ion radial width

modification due to Er shear54–57 is on the order of unity for
our ordering based on typical tokamak H-mode edge plasma
parameters. This can be easily shown from the fact that in
general toroidal geometry, the banana orbit modification
parameter58 is given by

S � 1 +
Mc2

e

�RB��2

�B2
�

��

 Er

RB�
� .

On the other hand, the E�B shearing rate in general toroidal
geometry29,31 is given by
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E =
�r0

�l�

c�RB��2

B

�

��

 Er

RB�
� .

Here, � is the poloidal flux representing the radial coordinate
via d�=RB�dr, �r0=��0 /RB� is the radial correlation
length, and �l�=RB��� /B is the correlation length of the
ambient turbulence in the direction perpendicular to the field
line, but within the flux surface. Therefore, for near isotropic
ambient turbulence, �r0��l�, they are related through59

S � 1 + 
 B

B�
�2
E

�i
.

Since 
E /�i��E
2 from Eq. �1�, we have 	S−1	�1, and we

have an order of unity banana orbit width modification due
to E�B shear. It is obvious that the appearance of the par-
ticular combination Er /RB� in both the E�B shearing rate
and the orbit modification factor is a consequence of the
axisymmetry in tokamak geometry. Based on our ordering,
the ion gyro-orbit is near circular in the frame moving with
the equilibrium E�B velocity.

In general, the variation of the fundamental one-form,
���	dz	=�idzi−hdt, yields the Euler–Lagrange equation37


 �� j

�zi −
��i

�zj �dzj

dt
=

�h

�zi +
��i

�t
. �5�

For the unperturbed phase-space Lagrangian given by
Eq. �3�, the nontrivial components of Eq. �5� are

−
e

c
B* �

dR

dt
− b

dp�

dt
= ��e + 	B + p�

2/�2M�

+ �M/2�uE
2 +

	B

2�
b · � � uE� .

Following the same decomposition procedure described in
Ref. 4, one obtains the following gyrocenter equations of
motion:

dR

dt
=

p�

M

B*

B
�
*

+
cb

eB
�
* � �e �  + 	 � B

+
	B

2�
� �b · � � uE� +

M

2
� �uE

2�� , �6�

and

dp�

dt
= −

B*

B
�
*

· �e �  + 	 � B +
	B

2�
� �b · � � uE�

+
M

2
� �uE

2�� . �7�

Here

B* � B +
Mc

e
� � 
uE +

p�

M
b� ,

and

B
�
* � b · B* = B�1 +

b

�
· � � 
uE +

P�

M
b�� .

III. LIE-PERTURBATION ANALYSIS WITH FULLY
ELECTROMAGNETIC FLUCTUATIONS

In this section, we introduce the time-dependent electro-
magnetic fluctuations corresponding to tokamak edge turbu-
lence. It has been almost universally observed17,18,60 that the
relative density fluctuation amplitude �n /n0 increases from
the core to the edge monotonically in tokamak plasmas when
there are no transport barriers. In the core, the level is often
less than 1%,8,11,13 while towards the LCFS, it typically
reaches �10−1. In the SOL, it can be sometimes as high as
0.25 in the form of long-lived, spatially intermittent
blobs.22,61 In this paper, we pursue the nonlinear gyrokinetic
approach with full ion Larmor radius effects k��i�1, and
strong turbulence,

�� �
�f

f0
�

e��

Ti
�

�B

B0
� 1. �8�

While the relative magnetic fluctuation level for edge
microturbulence, in the absence of low-mode-number MHD
activity, is measured to be much smaller than that of the
electrostatic fluctuations,20 we order them to be comparable
for generality. We perform the perturbation theory derivation
up to the second order in the relative fluctuation amplitude,
i.e., in ��. By taking the nonlinear mode coupling term com-
parable to the linear driving term from the equilibrium pres-
sure gradient, we get the mixing length type balance,62,63

�f / f0�1 /k�Lp which is equivalent to taking ����E for
k��i�1. Note that we maintain consistency in ordering by
keeping terms up to the second order both in �� and in �E

=�i /LE.
While one could also pursue a drift-kinetic type ordering

of e�� /Ti�1 and k��i�1, we believe that it is important to
treat the relatively short wavelength fluctuations at k��i�1,
which nonlinearly interact with the longer wavelength fluc-
tuations accurately, even though their amplitudes at satura-
tion are small.64 The necessity of resolving edge turbulence
down to the scale k��i�1 has been demonstrated in Ref. 25.
It is also encouraging to note that there seems to be a grow-
ing recognition65 that the final form of the nonlinear gyroki-
netic equation is robust in the drift kinetic regime. A related
explicit illustration exists66 for the electromagnetic nonlinear
gyrokinetic equations in a simple geometry5 in detail.

Fluctuations are introduced in the first order phase space
Lagrangian in terms of the four-potential ��� ,�A�,

�1 =
e

c
�A�R + �,t� · �dR + d�� − e���R + �,t�dt

=
e

c

�Agc · dR + �Agc ·

��

�	
d	 + �Agc ·

��

��
d��

− e��gcdt . �9�

Then, the Lie-perturbation analysis consists of finding
near-identity transformations, order by order, which elimi-
nate the gyrophase dependence in Eq. �9� introduced by the
fact that the fluctuating electromagnetic potentials are func-
tions of the particle position x�R+�, rather than functions
of the guiding center position R,
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�0 = �0 + dS0, �10�

�1 = �1 − L1�0 + dS1. �11�

Here, �0 is given by Eq. �3�,

�L1��	 = g1
�
 ��	

�z� −
���

�z	� , �12�

where g1
� is the generator of the Lie transformation. With

dS0=0 and g1
t =0, Eq. �11� yields

�1 = dS1 +
e

c

�Agc · dR + �Agc ·

��

�	
d	 + �Agc ·

��

��
d��

− e��gcdt +
Mc

e
g1

�d	 −
Mc

e
g1

	d� + b · g1
Rdp�

− g1
p�b · dR +

e

c
g1

R � B* · dR + �Bg1
	 +

p�

M
g1

p�

+ g1
R · �e �  + 	 � B +

M

2
� �uE

2�

+
	B

2�
� �b · � � uE���dt , �13�

where

g1
R � �g1

R1,g1
R2,g1

R3� .

In Eq. �13�, one can choose dS1 and g1
� such that all of the

�1� vanish except for �1t. This choice corresponds to the
Hamiltonian approach �rather than the symplectic approach�
adopted in Ref. 5. Also, by requiring that there be no
�-dependent term in �1t, one obtains

�1t � − e���gc = − e����gc −
1

c

 p̄�

M
b + uE� · ��Agc

−
1

c
�c� · �Agc� . �14�

Here, the contribution from vd is neglected, because �B

��E. It is important to note that p̄� � p� +e /c�A�gc, which is
close to the canonical momentum including the �A�

contribution. The bracket denotes the gyrophase
average, i.e., ���gc��2��−1�d����R+� , t�, for instance,

dS1=e�−1���gc− ���gc�d�̄ has been chosen according to the
gyrokinetic ordering.4

The second-order perturbation analysis deals with the
equation

�2 = �2 − L1�1 + � 1
2L1

2 − L2��0 + dS2.

The resulting equations have not been utilized in most prac-
tical applications.67–72 However, the resulting quadratic low-
frequency ponderomotive like terms are required for energy
conservation up to O���

2 �, in the formulation in terms of the
total distribution function.3,4 The importance of keeping
those terms for theoretical completeness has been discussed
in detail in a recent review article.7 The main result of the
second order perturbation analysis is the nonlinear modifica-
tion of the effective potential, which is described below. The

derivation is quite similar to that of Ref. 4 and is not repeated
here.

Finally, the total phase-space Lagrangian is given by

� = 
 e

c
A + MuE + p̄�b� · dR̄ +

	̄B

�
d�̄ − �H̄0 + e��gy�dt ,

�15�

where the effective gyrocenter perturbation potential is

e��gy � e���gc +
e2

2Mc2 �	�Agc	2 −
e3

2Mc�

�

�	
���̃gc

2 

�16�

with ��̃gc���gc− ���gc, ��̃gc��d�̄��̃gc, and the overbar
is used for the gyrocenter variables. Here, the last term re-
duces to −�Ti /2��uE

2 /vTi
2 in the long wavelength electrostatic

limit.65,73 We also find that the expression

�c /e�����̃gc�b ·���̃gc, which appeared in previous
work3–6 can be shown to be always smaller than the last term
of Eq. �16� by at least an order �B. The corresponding Euler–
Lagrange equation can be obtained by using Eq. �3�,

−
e

c
B* �

dR̄

dt
− b

dp̄�

dt
= �̄�H̄0 + e��gy� . �17�

Equation �17� can be decomposed into the following gyro-
center equations of motion:

dR̄

dt
= v̄�

B*

B
�
*

+
cb

eB
�
* � �e�̄� + ��gy� + 	̄�̄B

+
	̄B

2�
�̄�b · �̄ � uE� +

M

2
�̄�uE

2�� , �18�

and

dp̄�

dt
= −

B*

B
�
*

· �e�̄� + ��gy� + 	̄�̄B +
	̄B

2�
�̄�b · �̄ � uE�

+
M

2
�̄�uE

2�� , �19�

where the effective parallel velocity is

v̄� =
p̄�

M
+ e

���gy

�p̄�

. �20�

The cb /B
�
*� �̄��gy term on the R.H.S. of Eq. �18� con-

tains terms which are responsible for turbulence-driven ra-
dial transport. These include:

i� electrostatic E�B transport contained in cb /B

� �̄���gc��uE;
ii� magnetic flutter transport which is proportional to

−�p̄� /M�b /B0� �̄��A�gc��p̄� /M��B� /B; and finally
iii� a compressional magnetic fluctuation driven piece

−b /B� �̄�c� ·�A���c	̄ /eB�b� �̄�B�, for k��i�1.

It is important to note that the electromagnetic character of
the turbulence does not necessarily imply that the magnetic
transport mechanisms described by items ii� and iii� are sig-
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nificant for self-consistent transport carried by collective
fluctuations.74–76 Many details and subtleties involved in the
electrostatic E�B drift were exhaustively discussed in Ref.
77.

IV. NONLINEAR GYROKINETIC VLASOV–MAXWELL
SYSTEM

With Eqs. �18� and �19�, one can write the gyrokinetic
Vlasov equation for the gyrocenter distribution function

F�R̄ , 	̄ , p̄� , t�,

�F

�t
+

dR̄

dt
· �̄F +

dp̄�

dt

�F

�p̄�

= 0. �21�

Here, d	̄ /dt�0 and �F /��̄�0 have been used. One can also
write the gyrokinetic Vlasov equation in the following con-
tinuity equation form:

��B
�
*F�

�t
+ �̄ · 
B

�
*dR̄

dt
F� +

�

�p̄�


B
�
*dp̄�

dt
F� = 0. �22�

This is possible because Eqs. �18� and �19� satisfy the fol-
lowing phase-space conservation law:

�̄ · 
B
�
*dR̄

dt
� +

�

�p̄�


B
�
*dp̄�

dt
� = 0.

The continuity equation form is sometimes more useful in
applications which involve taking velocity moments.78–80

We note that various extensions of the gyrokinetic Vla-
sov equation are conceptually straightforward, once one de-
cides on the generalized ordering. This is because a system-
atic phase-space Lagrangian derivation of guiding center
drift is available, for instance, from Refs. 36–38. On the
other hand, expressing the particle charge density and current
in terms of the gyrocenter distribution function in the gyro-
kinetic Maxwell’s equations involves a rather cumbersome
pullback transformation from the gyrocenter coordinate to
the particle coordinate. Indeed, in many cases, the gyroki-
netic Maxwell’s equations were only presented in their most
general form representing the pullback transformation, with-
out an explicit evaluation of the integrals. However, for
many relevant applications including gyrokinetic simula-
tions, explicit evaluations of the particle charge density and
current from the gyrocenter distribution function are neces-
sary. This important aspect of explicit representation in the
gyrokinetic Poisson equation was recognized and carried
out2 before the more rigorous Hamiltonian method and the
phase-space Lagrangian method were introduced in the non-
linear gyrokinetic formalism.3,4 Consideration of energy con-
servation between particles and fields, in particular, identify-
ing the energy invariant in the gyrokinetic Vlasov–Maxwell
system also requires the same level of explicitness in the
gyrokinetic Maxwell’s equations and the gyrokinetic Vlasov
equation. Regarding this, the systematic derivation was first

achieved in Ref. 3 for electrostatic fluctuations in a straight
magnetic field, and then extended to toroidal geometry4 and
to electromagnetic fluctuations,5,6 and finally to the presence
of strongly sheared E�B flows.24 It is important to treat the
gyrokinetic Vlasov equation, the gyrokinetic Maxwell’s
equations, and the energy invariant self-consistently on an
equal footing. These form three pillars7 of nonlinear gyroki-
netic theory. We note that a field theoretical variational deri-
vation was also introduced.73,81

Now, we present the gyrokinetic Maxwell equations in
which the ion particle charge density and current are ex-
pressed in terms of the gyrocenter distribution function

F�R̄ , 	̄ , p̄� , t�,

�2� + ��� = − 4�e�� d6Z̄
F + g1
	̄ �F

�	̄
+ g1

R̄ · �̄F

+ g1
p̄�

�F

�p̄�

��3�R̄ − x + �̄� − ne�x,t�� , �23�

�2�A + �A� = −
4�e

c
�� d6Z̄
 p̄�

M
b + uE + c��

�
F + ḡ1
	 �F

�	̄
+ ḡ1

R · �̄F + g1
p̄�

�F

�p̄�

�
��3�R̄ − x + �̄� −� d3vvfe�x,v,t�� , �24�

where the Coulomb gauge � · �A+�A�=0

was used, and d6Z̄��B
�
* /M2�d3R̄dp̄�d	̄d�̄ , g1

	̄= �e /Mc�
��e /c�Agc ·��̄ /��̄+�S1 /��̄�, g1

R̄=−�1 /B
�
*�b� ��Agc

+c /e�̄S1�, g1
p̄� =B* /B

�
* · �e /c�Agc+ �̄S1�, p̄� � p� + �e /c��A�gc,

and S1=e�−1�d�̄���gc− ���gc�. Since the LHS is ��B, the
RHS should be divergence-free. Although we do not verify
this explicitly here, it is an important property73 in relation to
the Darwin model.82 It is encouraging to note that Alfvén
modes have been successfully simulated83 using a simpler set
of equations.4,5 It is also important to note that in our Hamil-
tonian formulation, p̄� is a canonical momentum including
�e /c�b* ·�A. In this case, our formulation is closer to the pz

formulation in Ref. 5 than to the vz formulation in the same
work. In Eq. �23�, the first four terms on the right-hand side
are the ion particle density ni�x , t�, written in terms of the
gyrocenter distribution function. The first term is the gyroav-
eraged gyrocenter density contribution, while the other three
terms are the general expression for the polarization density.

It can be shown that the g1
R̄ term and g1

p̄� term are smaller
than g1

	̄ term by an order, so these two terms can be ne-
glected in Eqs. �23� and �24� as well. The global gyrokinetic
Vlasov–Maxwell energy is obtained by the Noether method
and integration over space, as described in Eq. �50� of Ref.
81, and Eq. �199� of Ref. 7,
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E =
1

8�
� d3x�	�� + ���	2 + 	B0 + �B	2�

+� d6zfe�z�
1

2
mev

2 +� d6Z̄Fi�	̄B + p̄�
2/�2M�

+
M

2
uE

2 +
	̄B

2�
b · �̄ � uE −

1

c
���Agc · u*

+ ��Agc · c�� +
e2

2Mc2 �	�Agc	2 +
e3

2Mc�

�

�	

�����̃gc
2  −

1

c2 ���Ãgc · u* + �Agc · c�
˜ �2�� , �25�

where u*= p̄� /Mb+uE, �̃=�d��Ãgc, and �̃=�d��Agc·˜ c�.

We note that the terms ���̄�̃gc ·b� �̄��̃gc−1 /c2�̄��̃ ·u*

+ �̃� ·b� �̄��Ãgc ·u*+�Agc·˜ c��, which are corresponding to

the g1
R̄ term in Poisson’s equation are also smaller than the

other terms by at least one order, so they are also neglected
to conserve the energy exactly.

Here, we do not specify the electron dynamics, so as to
write the electron kinetic energy in a primitive form. How-
ever, depending on the problem considered, either a drift
kinetic equation84 or a bounce-averaged kinetic equation85,86

can be used when it is appropriate. Sometimes, nonlinearity
associated with the magnetically trapped electrons is
important.87–90 In Eq. �25�, the last term represents the slosh-
ing energy.3 In the total F formulation, the second-order non-
linear correction to the effective potential �the last term in
Eq. �16� which leads to the ponderomotive force� should be
kept alongside the sloshing energy in Eq. �25� in order to
ensure energy conservation. Here, E�−��+��� is the to-
tal electric field, and B=B0+�B is the total magnetic field.
Equation �25� is a generalization of the result of Ref. 24 to
the fully electromagnetic case. Now, we consider limiting
cases.

A. Long wavelength expression for arbitrary F

In the long wavelength limit k��i�1, the gyrokinetic
Vlasov equation is

�F

�t
+

dR̄

dt
· �̄F +

dp̄�

dt

�F

�p̄�

= 0, �26�

with corresponding equations of motion,

dR̄

dt
= v̄�

B*

B
�
*

+
cb

eB
�
* � �e�̄� + ��gy� + 	̄�̄B

+
	̄B

2�
�̄�b · �̄ � uE� +

M

2
�̄�uE

2�� , �27�

and

dp̄�

dt
= −

B*

B
�
*

· �e�̄� + ��gy� + 	̄�̄B

+
	̄B

2�
�̄�b · �̄ � uE� +

M

2
�̄�uE

2�� . �28�

But the effective gyrocenter perturbation potential in Eq.
�27� and �28� can be given in simplified form as

e��gy � e���gc +
e2

2Mc2�A�
2 −

M

2
��uE� +

p̄�

M

�B�

B
�2

−
e

c

�uE� +

p̄�

M

�B�

B
� · �A�, �29�

where �uE� =c /Bb������ and �����=����
−1 /c����A� ·uE. Also in this limit, the effective parallel ve-
locity from Eq. �20� is

v̄� =
p̄�

M

1 −

�B�
2

B2 � −
e

Mc
��A�gc

−
�B�

B
· 
�uE� +

e

Mc
�A�� · �30�

The gyrokinetic Maxwell equations �23� and �24� become

�2� + ��� = − 4�e�N̄i�x,t� − ne�x,t� +
�B�

B
Ni

+
e

M
�� · 
 Ni

�i
2������

−
1

Mc
�� · 
 Ji�

�i
2���A��� , �31�

�2�A� + �A�� = −
4�

c �J̄i��x,t� − je��x,t� +
�B�

B
Ji�

+
e

M
�� · 
 Ji�

�i
2������

−
e2

Mc
�� · 
�i�

�i
2 ���A��� , �32�

�2�A� + �A�� = −
4�

c �J̄i��x,t� + J̄iE�x,t� − je��x,t�

− jeE�x,t� +
�B�

B
JiE +

e2

M
��

· � Ni

�i
2 �������uE� −

e

Mc
��

· � Ji�

�i
2 ����A��uE�

+ eNi��uE −
�B�

B
�uE · �Â���Â��

+
Ji�

B
�B� − 2c � � 
P��B�

B2 b�� , �33�
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where �uE= �c /B�b����� and �Â�=�A� / 	�A�	. Noting
an apparent symmetry, Eqs. �31� and �32� can be written
using a two vector notation,

�2�A� + �A�� = −
4�

c
�J̄i

��x,t� − je
��x,t� +

�B�

B
Ji

�

+
e

M
�� · ��i�

��

�i
2 ���A���� , �34�

where A�= � ,A��, J�= �ceN ,J��, ���A��= ������ ,���A��,
and �i�

��= � ceNi Ji�

Ji� e�i�/c
�, the metric tensor g��= � 1 0

0 −1
�.

Equations �29� and �31� reduce to those of Ref. 24 in the
electrostatic limit. They also reduce to those of Ref. 7 in the
absence of uE. Here, we note that a coefficient n /�2�n /B2

appears inside the divergence operator ���� in the last two
terms of Eqs. �31� and �32�, and the sixth and seventh terms
on the R.H.S. of Eq. �33�. These expressions are more gen-
eral than those from Refs. 7 and 24 in toroidal geometry
where the 1 /B2 factor appears outside the divergence opera-
tor ����. Since we assume that LB�Lp ,LE here �and in other
references� the resulting modification is minor, quantita-
tively. However this general expression is physically appeal-
ing, since vA

2 �B2 /n and a close relation exists between the
polarization density and the vorticity which appears in re-
duced fluid equations.65 This could serve as a useful guide-
line when one wants to extend the formulation to a more
compact confinement device, such as, NSTX.52 The third
term on the R.H.S. of Eq. �31�, ��B�k /B�Ni, can be shown to
originate from the E�B drift caused by an induction electric
field perpendicular to B0, i.e., �E�ind=−�1 /c�� /�t�A�.

Now, we discuss the shielding properties of gyrokinetic
plasma in the presence of the equilibrium electric field. As
widely recognized, representing the polarization drift as a
shielding term in the gyrokinetic Poisson equation2 has pro-
vided one of the key computational advantages of the gyro-
kinetic approach. However, there is an important qualitative
difference between the Debye shielding and the polarization
shielding, in addition to their magnitudes. In Eq. �31�, the
Debye shielding term on the left-hand side contains both the
equilibrium potential and the perturbed potential, while the
polarization density involves �� only. This is because the
polarization density is related to the polarization drift via the
continuity equation, and the polarization drift occurs only for
the time-varying electric field. Here, it is shown that if one
uses a simplified definition of a gyrocenter density, a
polarization-density-like term associated with  appears.24

The gyroaveraged gyrocenter density N̄i is defined by

N̄i �� B
�
*

M2
d3R̄dp̄�d�̄d	̄Fi�

3�R̄ − x + �̄� , �35�

and this differs slightly from the gyrocenter density Ni,
which is defined by

Ni �� B
�
*

M2
d3R̄dp̄�d�̄d	̄Fi�

3�R̄ − x� . �36�

In computation, it has been the usual practice to use a sim-

plified gyrocenter density N̄i
0 with an approximate Jacobian

of a phase-space volume element B instead,

N̄i
0 �� B

M2d3R̄dp̄�d�̄d	̄Fi�
3�R̄ − x + �̄� .

Then, using the approximation, B
�
*�B�1+b /�

·�� �uE+ p̄� /Mb���B+ �1 /����
2 , one can write Eq. �35�

as

N̄i � N̄i
0
1 +

e�s
2

Te
��

2 � . �37�

Now, the last term looks like the polarization density associ-
ated with . This identification might be useful when one
tries to perform a long-time simulation with a slowly time
varying .91–95

In passing, we remark that it is possible to formulate
gyrokinetics in such a way that the polarization drift appears
in the gyrokinetic Vlasov equation96 rather than as a polar-
ization density in the gyrokinetic Poisson equation. In Refs.
33–35, the polarization drift associated with a time-varying
background appears in the gyrokinetic Vlasov equation,
while the polarization density associated with shorter wave-
length fluctuations appears in the gyrokinetic Poisson equa-
tion as usual. If one tries to describe a transport barrier for-
mation, such as, an H-mode transition, a distinction between
the time-varying background and large-scale fluctuations be-
comes rather subtle. In addition, a division between large
scale fluctuations and short scale fluctuations seems arbitrary,
as noted in previous work.66 Other terms which appear in
Eqs. �31�–�33� are defined as

�J̄i�, J̄iE, J̄i�� � e� B
�
*

M2
d3R̄dp̄�d�̄d	̄Fi
 p̄�

M
,uE,c��

��3�R̄ − x + �̄� , �38a�

�je�,jeE,je�� � e� d3vfex,�v̄�,uE,c�� , �38b�

�Ji�,JiE� � e� B
�
*

M2
d3R̄dp̄�d�̄d	̄Fi
 p̄�

M
,uE��3�R̄ − x� ,

�38c�

�i� � � B
�
*

M2
d3R̄dp̄�d�̄d	̄Fi

p̄�
2

2M
�3�R̄ − x� , �38d�

P� �� B
�
*

M2
d3R̄dp̄�d�̄d	̄Fi	̄B�3�R̄ − x� . �38e�

Since v̄� � p̄� /me+ �e /mec��A�, the collisionless skin depth
term �
pe /c�2�A� will appear explicitly on the R.H.S. of Eq.
�32�, if the current density je� is defined by the moment of p̄�.
We can see that the electrons contribute to the collisionless
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skin depth term dominantly, so it is reasonable to neglect that
of the ions in Eq. �24�. Turbulence at the scale of the colli-
sionless skin depth was simulated97,98 and measured in
experiments.99

The corresponding energy invariant which is exactly
conserved by Eqs. �26�–�33� which are long wavelength ap-
proximations to gyrokinetic Vlasov equation and Maxwell
equations, respectively, is

E =
1

8�
� d3x�	�� + ���	2 + 	B0 + �B	2� +� d6zfe�z�

1

2
mev

2 +� d6Z̄Fi
	̄B +
M

2
uE

2 +
p̄�

2

2M
+

	̄B

2�
b · �̄ � uE

−
1

c
���Agc · u* + ��Agc · c�� +

e2

2Mc2 ��A��2 +
M

2
��uE

2 − � p̄�

M

�B�

B
−

�B�

B
�uE · �Â���Â��2�

−
e

cB

 p̄�

M
�B� −

�B�

B
uE� · �A� . �39�

B. Arbitrary wavelength expressions for Maxwellian F in �̄

Now, we consider arbitrary values of k��i, but assume that F is Maxwellian in 	̄ �i.e., F�exp�−	̄B /T��. Note that this
approximation is a bit more general than a linearization with a Maxwellian equilibrium distribution function F0, but inclusive
of the latter. In this limit, after expanding in Fourier components, Eqs. �23� and �24� become

�2� + ��� = − 4�e�N̄i − ne − �
k

exp�ik · x��1 − �0

Ti

eNi��k� −

1

c
Ji��A�k� + ��1 − �0�

�B�k

B
Ni�� , �40�

�2�A� + �A�� = −
4�

c �J̄i� − je� − �
k

exp�ik · x�� e

Ti
�1 − �0�
Ji���k� −

e

c
�i��A�k� + ��1 − �0�

�B�k

B
Ji��� , �41�

�2�A� + �A�� = −
4�

c 
J̄i� + J̄iE − je� − jeE − �
k

exp�ik · x�� e

Ti
�1 − �0�
eNi��k� −

1

c
Ji��A�k�uE + ��1 − �0�

�B�k

B
jE

+ ��1 − �0��eNi��uEk − �uE · �Â�k��Â�k� + Ji�
�B�k

B
� +

e2

Mc
Ni�2�1 + k�

2 �i
2��0 + �2 − 2�1���A�k�� ,

�42�

where ��k�=��k− �1 /c�uE ·�A�k. We do not keep some higher order terms kept in Refs. 3 and 5, since those are not necessary
for energy conservation. Once again, Eqs. �40� and �41� can be combined in a covariant fashion with a two-vector notation,

�2�A� + �A�� = −
4�

c �J̄i
� − je

� − �
k

exp�ik · x�� e

Ti
�1 − �0��i�

���A�k� + ��1 − �0�
�B�k

B
Ji

�

+
e

Ti
��1 − �0�i�i

2k� · ����i�
����A�k� �� , �43�

where �n�b�= In�b�e−b, and In is the modified Bessel function of order n, where b=k�
2 �i

2. The corresponding exactly conserved
energy for this system can be written as

E =
1

8�
� d3x�	�� + ���	2 + 	B + �B	2� +� d6zfe�z�

1

2
me�v�b + c� + uE�2 +� d6Z̄Fi�	̄B +

p̄�
2

2M
+

M

2
uE

2 +
	̄B

2�
b · �̄ � uE

−
1

c
���Agc · u* + ��Agc · c��� +

e

2Ti
�

k

�1 − �0��en0	��k	2 −
1

c2 �e�i0�	�A�k	2 + uE0 · �A−k�ji0E · �Ak + 2ji0��A�k���
+

e2n0

2Mc2�
k
�	�A�k	2 + �2�1 + k�

2 �i
2��0 + �2 − 2�1��

	�B�k	2

k�
2 � −

1

cB
�

k

��0 − �1��B�−k�ji0E · �Ak + ji0��A�k� , �44�
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with

n0 �� B
�
*

M2
dp̄�d�̄d	̄Fi0, �45a�

�ji0�,ji0E� � e� B
�
*

M2
dp̄�d�̄d	̄Fi0
 p̄�

M
,uE0� , �45b�

�i0� � � B
�
*

M2
dp̄�d�̄d	̄Fi0

p̄�
2

2M
. �45c�

Once again, Eqs. �43� and �44� are the fully electromag-
netic generalization of the electrostatic results in Ref. 24.
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