1,427 research outputs found

    Exploiting the Design Freedom of RM

    Get PDF
    This paper details how Rapid Manufacturing (RM) can overcome the restrictions imposed by the inherent process limitations of conventional manufacturing techniques and become the enabling technology in fabricating optimal products. A new design methodology capable of exploiting RM’s increased design freedom is therefore needed. Inspired by natural world structures of trees and bones, a multi-objective, genetic algorithm based topology optimisation approach is presented. This combines multiple unit cell structures and varying volume fractions to create a heterogeneous part structure which exhibits a uniform stress distribution.Mechanical Engineerin

    Statistical physics of cerebral embolization leading to stroke

    Full text link
    We discuss the physics of embolic stroke using a minimal model of emboli moving through the cerebral arteries. Our model of the blood flow network consists of a bifurcating tree, into which we introduce particles (emboli) that halt flow on reaching a node of similar size. Flow is weighted away from blocked arteries, inducing an effective interaction between emboli. We justify the form of the flow weighting using a steady flow (Poiseuille) analysis and a more complicated nonlinear analysis. We discuss free flowing and heavily congested limits and examine the transition from free flow to congestion using numerics. The correlation time is found to increase significantly at a critical value, and a finite size scaling is carried out. An order parameter for non-equilibrium critical behavior is identified as the overlap of blockages' flow shadows. Our work shows embolic stroke to be a feature of the cerebral blood flow network on the verge of a phase transition.Comment: 11 pages, 11 figures. Major rewrite including improved justification of the model and a finite size scalin

    <i>d</i>-wave superconductivity from electron-phonon interactions

    Get PDF
    I examine electron-phonon mediated superconductivity in the intermediate coupling and phonon frequency regime of the quasi-two-dimensional Holstein model. I use an extended Migdal-Eliashberg theory that includes vertex corrections and spatial fluctuations. I find a d-wave superconducting state that is unique close to half filling. The order parameter undergoes a transition to s-wave superconductivity on increasing filling. I explain how the inclusion of both vertex corrections and spatial fluctuations is essential for the prediction of a d-wave order parameter. I then discuss the effects of a large Coulomb pseudopotential on the superconductivity (such as is found in contemporary superconducting materials like the cuprates), which results in the destruction of the s-wave states, while leaving the d-wave states unmodified
    • …
    corecore