1,261 research outputs found
Multivariate Analysis, Retrieval, and Storage System (MARS). Volume 6: MARS System - A Sample Problem (Gross Weight of Subsonic Transports)
The Mars system is a tool for rapid prediction of aircraft or engine characteristics based on correlation-regression analysis of past designs stored in the data bases. An example of output obtained from the MARS system, which involves derivation of an expression for gross weight of subsonic transport aircraft in terms of nine independent variables is given. The need is illustrated for careful selection of correlation variables and for continual review of the resulting estimation equations. For Vol. 1, see N76-10089
Investigating the use of semantic technologies in spatial mapping applications
Semantic Web Technologies are ideally suited to build context-aware information retrieval applications. However, the geospatial aspect of context awareness presents unique challenges such as the semantic modelling of geographical references for efficient handling of spatial queries, the reconciliation of the heterogeneity at the semantic and geo-representation levels, maintaining the quality of service and scalability of communicating, and the efficient rendering of the spatial queries' results. In this paper, we describe the modelling decisions taken to solve these challenges by analysing our implementation of an intelligent planning and recommendation tool that provides location-aware advice for a specific application domain. This paper contributes to the methodology of integrating heterogeneous geo-referenced data into semantic knowledgebases, and also proposes mechanisms for efficient spatial interrogation of the semantic knowledgebase and optimising the rendering of the dynamically retrieved context-relevant information on a web frontend
Multivariate Analysis, Retrieval, and Storage System (MARS). Volume 1: MARS System and Analysis Techniques
A method for rapidly examining the probable applicability of weight estimating formulae to a specific aerospace vehicle design is presented. The Multivariate Analysis Retrieval and Storage System (MARS) is comprised of three computer programs which sequentially operate on the weight and geometry characteristics of past aerospace vehicles designs. Weight and geometric characteristics are stored in a set of data bases which are fully computerized. Additional data bases are readily added to the MARS system and/or the existing data bases may be easily expanded to include additional vehicles or vehicle characteristics
Recommended from our members
Tuning Correlation Effects with ElectronâPhonon Interactions
We investigate the effect of tuning the phonon energy on the correlation effects in models of electronâphonon interactions using DMFT. In the regime where itinerant electrons, instantaneous electronâphonon driven correlations and static distortions compete on similar energy scales, we find several interesting results including (1) A crossover from band to Mott behavior in the spectral function, leading to hybrid band/Mott features in the spectral function for phonon frequencies slightly larger than the band width. (2) Since the optical conductivity depends sensitively on the form of the spectral function, we show that such a regime should be observable through the low frequency form of the optical conductivity. (3) The resistivity has a double kondo peak arrangement
Highly sensitive alkane odour sensors based on functionalised gold nanoparticles
We deposit dense, ordered, thin films of Au-dodecanethiol core/shell nanoparticles by the Langmuir-Schafer (LS) printing method, and find that their resistance at ambient temperature responds selectively and sensitively to alkane odours. Response is a rapid resistance increase due to swelling, and is strongest for alkane odours where the alkane chain is similar in length to the dodecane shell. For decane odours, we find a response to concentrations as low as 15 ppm, about 600 times below the lower explosive limit. Response is weaker, but still significant, to aromatic odours (e.g. Toluene, Xylene), while potential interferants such as polar and/or hydrogen-bonding odours (e.g. alcohols, ketones, water vapour) are somewhat rejected. Resistance is weakly dependent on temperature, and recovers rapidly and completely to its original value within the error margin of measurement. (C) 2011 Elsevier B.V. All rights reserved
Using computers to identify non-compliant people at increased risk of osteoporotic fractures in general practice: a cross-sectional study.
National guidelines recommend bisphosphonates for secondary prevention of osteoporotic fractures; however, poor compliance may result in sub-optimal prevention
Gap modification of atomically thin boron nitride by phonon mediated interactions
A theory is presented for the modification of bandgaps in atomically thin
boron nitride (BN) by attractive interactions mediated through phonons in a
polarizable substrate, or in the BN plane. Gap equations are solved, and gap
enhancements are found to range up to 70% for dimensionless electron-phonon
coupling \lambda=1, indicating that a proportion of the measured BN bandgap may
have a phonon origin
Optimal interlayer hopping and high temperature BoseâEinstein condensation of local pairs in quasi 2D superconductors
Both FeSe and cuprate superconductors are quasi 2D materials with high transition temperatures and local fermion pairs. Motivated by such systems, we investigate real space pairing of fermions in an anisotropic lattice model with intersite attraction, V, and strong local Coulomb repulsion, U, leading to a determination of the optimal conditions for superconductivity from BoseâEinstein condensation. Our aim is to gain insight as to why high temperature superconductors tend to be quasi 2D. We make both analytically and numerically exact solutions for two body local pairing applicable to intermediate and strong V. We find that the BoseâEinstein condensation temperature of such local pairs pairs is maximal when hopping between layers is intermediate relative to in-plane hopping, indicating that the quasi 2D nature of unconventional superconductors has an important contribution to their high transition temperatures
Hole-depletion of ladders in SrCuO induced by correlation effects
The hole distribution in SrCuO is studied by low
temperature polarization dependent O K Near-Edge X-ray Absorption Fine
Structure measurements and state of the art electronic structure calculations
that include core-hole and correlation effects in a mean-field approach.
Contrary to all previous analysis, based on semi-empirical models, we show that
correlations and antiferromagnetic ordering favor the strong chain
hole-attraction. For the remaining small number of holes accommodated on
ladders, leg-sites are preferred to rung-sites. The small hole affinity of
rung-sites explains naturally the 1D - 2D cross-over in the phase diagram of
(La,Y,Sr,Ca)CuOComment: 6 pages, 8 figure
Multivariate Analysis, Retrieval, and Storage System (MARS). Volume 4: Turbojet and Turbofan Data Base (By Engine)
A partial listing of turbojet and turbofan engine specifications data, as provided by the MARS (Multivariable Data Analysis, Retrieval, and Storage) system, was given for a number of engines
- âŠ