160 research outputs found

    Vertical movement of adult rusty grain beetles, Cryptolestes ferrugineus, in stored corn and wheat at uniform moisture content

    Get PDF
    Vertical movement and distribution of Cryptolestes ferrugineus (Coleoptera: Laemophloeidae) adults in stored wheat and corn were studied in small (0.1 x 0.1 x 1 m) and large (0.6 m diameter and 1.12 m high) columns. The adults were introduced at the top, middle, and bottom of the small columns with a uniform moisture content (wheat: 14.5 ± 0.1%, corn 13.5 ± 0.1%, 15.5 ± 0.1%, and 17.5 ± 0.1%) at 27.5 ± 0.5°C. When introduced at different locations, adults showed a similar distribution in stored grain bulk with a uniform temperature and moisture content of 14.5% for wheat or 15.5% for corn. Adults showed downward displacement over 24 h when corn moisture was lower than 15.5%, but they did not show downward displacement when moisture content was 17.5%. The upward or downward movement might partially be caused by a drift effect due to beetles sliding between seeds and the displacement of the adults might be the combined effect of walking and falling during their movement. The hydrophilic behavior plus the drift effect explain why the beetles had a faster downward dispersal in the 13.5% corn than in the 15.5% and 17.5% corn and a slight upward displacement in 17.5% corn because they were more active at the lower moisture contents. Adults had a similar movement and distribution in both the small and large wheat columns

    Theoretical analysis of the electronic structure of the stable and metastable c(2x2) phases of Na on Al(001): Comparison with angle-resolved ultra-violet photoemission spectra

    Full text link
    Using Kohn-Sham wave functions and their energy levels obtained by density-functional-theory total-energy calculations, the electronic structure of the two c(2x2) phases of Na on Al(001) are analysed; namely, the metastable hollow-site structure formed when adsorption takes place at low temperature, and the stable substitutional structure appearing when the substrate is heated thereafter above ca. 180K or when adsorption takes place at room temperature from the beginning. The experimentally obtained two-dimensional band structures of the surface states or resonances are well reproduced by the calculations. With the help of charge density maps it is found that in both phases, two pronounced bands appear as the result of a characteristic coupling between the valence-state band of a free c(2x2)-Na monolayer and the surface-state/resonance band of the Al surfaces; that is, the clean (001) surface for the metastable phase and the unstable, reconstructed "vacancy" structure for the stable phase. The higher-lying band, being Na-derived, remains metallic for the unstable phase, whereas it lies completely above the Fermi level for the stable phase, leading to the formation of a surface-state/resonance band-structure resembling the bulk band-structure of an ionic crystal.Comment: 11 pages, 11 postscript figures, published in Phys. Rev. B 57, 15251 (1998). Other related publications can be found at http://www.rz-berlin.mpg.de/th/paper.htm

    A red knot as a black swan:How a single bird shows navigational abilities during repeat crossings of the Greenland Icecap

    Get PDF
    Despite the wealth of studies on seasonal movements of birds between southern nonbreeding locations and High Arctic breeding locations, the key mechanisms of navigation during these migrations remain elusive. A flight along the shortest possible route between pairs of points on a sphere ('orthodrome') requires a bird to be able to assess its current location in relation to its migration goal and to make continuous adjustment of heading to reach that goal. Alternatively, birds may navigate along a vector with a fixed orientation ('loxodrome') based on magnetic and/or celestial compass mechanisms. Compass navigation is considered especially challenging for summer migrations in Polar regions, as continuous daylight and complexity in the geomagnetic field may complicate the use of both celestial and magnetic compasses here. We examine the possible use of orientation mechanisms during migratory flights across the Greenland Icecap. Using a novel 2 g solar-powered satellite transmitter, we documented the flight paths travelled by a female red knotCalidris canutus islandicaduring two northward and two southward migrations. The geometry of the paths suggests that red knots can migrate across the Greenland Icecap along the shortest-, orthodrome-like, path instead of the previously suggested loxodrome path. This particular bird's ability to return to locations visited in a previous year, together with its sudden course changes (which would be appropriate responses to ambient wind fields), suggest a map sense that enables red knots to determine location, so that they can tailor their route depending on local conditions

    Influence of band width on the scattered ion yield spectra of a He + Ion by resonant or quasi-resonant charge exchange neutralization

    Get PDF
    The influence of the band structure, especially the bandwidth, on the scattered ion yield spectra of a He+ ion by the resonant or quasi-resonant neutralization was theoretically examined using quantum rate equations. When calculating the scattered ion yield spectra of He+ to simulate the experimental data, we observed that the band structure, especially the bandwidth, had a strong influence on the spectra at relatively low incident He+ ion energies of less than several hundred eV. Through many simulations, it was determined that theoretical calculations that include bandwidth calculation can simulate or reproduce the experimentally observed spectra of He+-In, He+-Ga, and He+-Sn systems. In contrast, simulations not including bandwidth simulation could neither reproduce nor account for such spectra. Furthermore, the calculated ion survival probability (ISP) at low incident ion energies tended to decrease with increasing bandwidth. This decrease in ISP probably corresponds to the relatively small scattered ion yield usually observed at low incident ion energies. Theoretically, such a decrease indicates that a He+ ion with a low incident energy can be easily neutralized on the surface when the bandwidth is large

    Post-harvest management and associated food losses and by-products of cassava in southern Ethiopia

    Get PDF
    Improved (high yield and disease resistant) cassava varieties were introduced into Ethiopia around the onset of the twenty-first century, as a potential food security crop. At present, limited information is available from the country on post-production aspects of the value chain (VC) and related food losses. The lack of such data prevents policymakers and VC actors from taking steps towards improving VC efficiencies, which can have a significant impact on livelihoods and food security. The focus of this study was to examine the prevailing post-harvest practices in the cassava VC in southern Ethiopia and quantify the extent of food losses and associated by-products in the framework of the recently developed ‘food loss and waste protocol’. The majority of the cassava in the study area was processed into dry chips and milled into a composite flour with teff and maize to prepare the staple bread (injera). ‘Critical loss points’ were during sun-drying (4%) and stockpiling at farm and marketplace (30–50%). Insect pest damage was primarily responsible for food losses at farm and market level. The most important insect species infesting dry cassava were identified during the survey. As far as the by-products were concerned, the ratio of leaf:wood (stem and stump):starchy root on a dry matter basis at harvest was 1:6:10. Further emphasis should be on improving processing and storage technologies to reduce food losses and the better recovery and utilisation of by-products, especially the leaves of cassava, which could be a potential source of protein in human diets
    • …
    corecore