83 research outputs found

    Unified Band Theoretic Description of Electronic and Magnetic Properties of Vanadium Dioxide Phases

    Full text link
    The debate about whether the insulating phases of vanadium dioxide (VO2) can be described by band theory or must be described by a theory of strong electron correlations remains unresolved even after decades of research. Energy-band calculations using hybrid exchange functionals or including self-energy corrections account for the insulating or metallic nature of different phases, but have not yet successfully accounted for the observed magnetic orderings. Strongly-correlated theories have had limited quantitative success. Here we report that, by using hard pseudopotentials and an optimized hybrid exchange functional, the energy gaps and magnetic orderings of both monoclinic VO2 phases and the metallic nature of the high-temperature rutile phase are consistent with available experimental data, obviating an explicit role for strong correlations. We also report a potential candidate for the newly-found metallic monoclinic phase and present a detailed magnetic structure of the M2 monoclinic phase

    Ultrafast Plasmonic Control of Second Harmonic Generation

    Full text link
    Efficient frequency conversion techniques are crucial to the development of plasmonic metasurfaces for information processing and signal modulation. In principle, nanoscale electric-field confinement in nonlinear materials enables higher harmonic conversion efficiencies per unit volume than those attainable in bulk materials. Here we demonstrate efficient second-harmonic generation (SHG) in a serrated nanogap plasmonic geometry that generates steep electric field gradients on a dielectric metasurface. An ultrafast pump is used to control plasmon-induced electric fields in a thin-film material with inversion symmetry that, without plasmonic enhancement, does not exhibit an an even-order nonlinear optical response. The temporal evolution of the plasmonic near-field is characterized with ~100as resolution using a novel nonlinear interferometric technique. The ability to manipulate nonlinear signals in a metamaterial geometry as demonstrated here is indispensable both to understanding the ultrafast nonlinear response of nanoscale materials, and to producing active, optically reconfigurable plasmonic device

    Instantaneous band gap collapse in photoexcited monoclinic VO2_2 due to photocarrier doping

    Full text link
    Using femtosecond time-resolved photoelectron spectroscopy we demonstrate that photoexcitation transforms monoclinic VO2_2 quasi-instantaneously into a metal. Thereby, we exclude an 80 femtosecond structural bottleneck for the photoinduced electronic phase transition of VO2_2. First-principles many-body perturbation theory calculations reveal a high sensitivity of the VO2_2 bandgap to variations of the dynamically screened Coulomb interaction, supporting a fully electronically driven isostructral insulator-to-metal transition. We thus conclude that the ultrafast band structure renormalization is caused by photoexcitation of carriers from localized V 3d valence states, strongly changing the screening \emph{before} significant hot-carrier relaxation or ionic motion has occurred

    Control of Plasmonic Nanoantennas by Reversible Metal-insulator Transition

    Get PDF
    We demonstrate dynamic reversible switching of VO2 insulator-to-metal transition (IMT) locally on the scale of 15 nm or less and control of nanoantennas, observed for the first time in the near-field. Using polarization-selective near-field imaging techniques, we simultaneously monitor the IMT in VO2 and the change of plasmons on gold infrared nanoantennas. Structured nanodomains of the metallic VO2 locally and reversibly transform infrared plasmonic dipole nanoantennas to monopole nanoantennas. Fundamentally, the IMT in VO2 can be triggered on femtosecond timescale to allow ultrafast nanoscale control of optical phenomena. These unique features open up promising novel applications in active nanophotonics
    corecore