323 research outputs found

    Unravelling the Dodecahedral Spaces

    Full text link
    The hyperbolic dodecahedral space of Weber and Seifert has a natural non-positively curved cubulation obtained by subdividing the dodecahedron into cubes. We show that the hyperbolic dodecahedral space has a 6-sheeted irregular cover with the property that the canonical hypersurfaces made up of the mid-cubes give a very short hierarchy. Moreover, we describe a 60-sheeted cover in which the associated cubulation is special. We also describe the natural cubulation and covers of the spherical dodecahedral space (aka Poincar\'e homology sphere).Comment: 15 pages + 6 pages appendix, 7 figures, 4 table

    22 Gb/s error-free data transmission beyond 1 km of multi-mode fiber using 850 nm VCSELs

    Get PDF
    The first error-free data transmission beyond 1 km of multi-mode fiber at bit-rates exceeding 20 Gb/s is demonstrated using a high modulation bandwidth, quasi-single mode (SMSR similar to 20 dB) 850 nm VCSEL. A VCSEL with small similar to 3 mu m aperture shows quasi-single mode operation with a narrow spectral width. The top mirror reflectivity of the VCSEL is optimized for high speed and high output power by shallow etching. A combination of narrow spectral width and high optical power reduces the effects of fiber dispersion and fiber and connector losses and enables such a long transmission distance at high bit-rates

    20 Gbit/s error-free operation of 850 nm oxide-confined VCSELs beyond 1 km of multimode fibre

    Get PDF
    Error-free transmission over 1.1 km of OM4 multimode fibre is demonstrated at 20 Gbit/s bit rate using a narrow spectral width, high-speed 850 nm vertical-cavity surface-emitting laser

    Metal-insulator phase transition in a VO2 thin film observed with terahertz spectroscopy

    Get PDF
    We investigate the dielectric properties of a thin VO2 film in the terahertz frequency range in the vicinity of the semiconductor-metal phase transition. Phase-sensitive broadband spectroscopy in the frequency region below the phonon bands of VO2 gives insight into the conductive properties of the film during the phase transition. We compare our experimental data with models proposed for the evolution of the phase transition. The experimental data show that the phase transition occurs via the gradual growth of metallic domains in the film, and that the dielectric properties of the film in the vicinity of the transition temperature must be described by effective-medium theory. The simultaneous measurement of both transmission and phase shift allows us to show that Maxwell-Garnett effective-medium theory, coupled with the Drude conductivity model, can account for the observed behavior, whereas the widely used Bruggeman effective-medium theory is not consistent with our findings. Our results show that even at temperatures significantly above the transition temperature the formation of a uniform metallic phase is not complete.Peter Uhd Jepsen, Bernd M. Fischer, Andreas Thoman, Hanspeter Helm, J. Y. Suh, René Lopez, and R. F. Haglund, Jr

    4-PAM for high-speed short-range optical communications

    Get PDF
    In this work, we compare 4-pulse amplitude modulation and on–off keying modulation formats at high speed for short-range optical communication systems. The transmission system comprised a directly modulated verticalcavity surface-emitting laser operating at a wavelength of 850 nm, an OM3Å multimode fiber link, and a photodetector detecting the intensity at the receiver end. The modulation formats were compared both at the same bit-rate and at the same symbol rate. The maximum bit-rate used was 25 Gbps. Propagation distances up to 600 m were investigated at 12.5 Gbps. All measurements were done in real time and without any equalization

    30 Gbps 4-PAM transmission over 200m of MMF using an 850 nm VCSEL

    Get PDF
    We present high speed real time, error free 4-PAMtransmission for short range optical links based on a VCSEL operating at 850 nm, a multimode fibre and a simple intensity detector. Transmission speeds of 25 Gbps and 30 Gbps are demonstrated, and the maximum fibre reaches were 300 m and 200 m, respectively. The 4-PAM is also compared with OOK transmission at 25 Gbps, and we find that at this bit rate 4-PAM increases the error free transmission distance in the multimode fibre by 100 m, compared to OOK

    High-power single transverse and polarization mode VCSEL for silicon photonics integration

    Get PDF
    \ua9 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement. We demonstrate a 6.5 mW single transverse and polarization mode GaAs-based oxide-confined VCSEL at 850 nm. High power is enabled by a relatively large oxide aperture and an epitaxial design for low resistance, low optical loss, and high slope efficiency VCSELs. With the oxide aperture supporting multiple polarization unrestrained transverse modes, single transverse and polarization mode operation is achieved by a transverse and polarization mode filter etched into the surface of the VCSEL. While the VCSEL is specifically designed for light source integration on a silicon photonic integrated circuit, its performance in terms of power, spectral purity, polarization, and beam properties are of great interest for a large range of applications

    37 Gbps transmission over 200 m of MMF using single cycle subcarrier modulation and a VCSEL with 20 GHz modulation bandwidth

    Get PDF
    We report transmission at 37.2 Gb/s over 200 m of multimode fibre using a directly modulated VCSEL operating at 850 nm, using 20 GHz modulation bandwidth

    1060 nm VCSELs for long-reach optical interconnects

    Get PDF
    Reach extension of high capacity optical interconnects based on vertical-cavity surface-emitting lasers (VCSELs) and multimode fibers (MMFs), as needed for large-scale data centers, would benefit from high-speed GaAs-based VCSELs at 1060 nm. At this wavelength, the chromatic dispersion and attenuation of the optical fiber are much reduced in comparison with 850 nm. We present single and multimode 1060 nm VCSELs based on designs derived partly from our high-speed 850 nm VCSEL designs. The single-mode VCSEL, with a modulation bandwidth exceeding 22 GHz, supports back-to-back data rates up to 50 Gbps at 25 \ub0C and 40 Gbps at 85 \ub0C under binary NRZ (OOK) modulation. Using mode-selective launch, we demonstrate error-free 25 Gbps transmission over 1000 m of 1060 nm optimized MMF. Higher data rates and/or longer distances will be possible with equalization, forward-error-correction, and/or multilevel modulation
    • …
    corecore