423 research outputs found

    Detection of plant stress through multispectral photography

    Get PDF
    There are no author-identified significant results in this report

    Helicity Dependent and Independent Generalized Parton Distributions of the Nucleon in Lattice QCD

    Full text link
    A complete description of the nucleon structure in terms of generalized parton distributions (GPDs) at twist 2 level requires the measurement/computation of the eight functions H, E, \tilde H, \tilde E, H_T, E_T, \tilde H_T and \tilde E_T, all depending on the three variables x, \xi and t. In this talk, we present and discuss our first steps in the framework of lattice QCD towards this enormous task. Dynamical lattice QCD results for the lowest three Mellin moments of the helicity dependent and independent GPDs are shown in terms of their corresponding generalized form factors. Implications for the transverse coordinate space structure of the nucleon as well as the orbital angular momentum (OAM) contribution of quarks to the nucleon spin are discussed in some detail.Comment: 5 pages, 5 figures, Talk presented by Ph.H. at Electron-Nucleus Scattering VIII, Elba, Italy, June 21-25, 2004; typos corrected, minor change in wording on p.4&

    Nucleon Electromagnetic Form Factors from Lattice QCD using 2+1 Flavor Domain Wall Fermions on Fine Lattices and Chiral Perturbation Theory

    Full text link
    We present a high-statistics calculation of nucleon electromagnetic form factors in Nf=2+1N_f=2+1 lattice QCD using domain wall quarks on fine lattices, to attain a new level of precision in systematic and statistical errors. Our calculations use 323×6432^3 \times 64 lattices with lattice spacing a=0.084 fm for pion masses of 297, 355, and 403 MeV, and we perform an overdetermined analysis using on the order of 3600 to 7000 measurements to calculate nucleon electric and magnetic form factors up to Q2Q^2 \approx 1.05 GeV2^2. Results are shown to be consistent with those obtained using valence domain wall quarks with improved staggered sea quarks, and using coarse domain wall lattices. We determine the isovector Dirac radius r1vr_1^v, Pauli radius r2vr_2^v and anomalous magnetic moment κv\kappa_v. We also determine connected contributions to the corresponding isoscalar observables. We extrapolate these observables to the physical pion mass using two different formulations of two-flavor chiral effective field theory at one loop: the heavy baryon Small Scale Expansion (SSE) and covariant baryon chiral perturbation theory. The isovector results and the connected contributions to the isoscalar results are compared with experiment, and the need for calculations at smaller pion masses is discussed.Comment: 44 pages, 40 figure

    Nucleon structure with two flavors of dynamical domain-wall fermions

    Full text link
    We present a numerical lattice quantum chromodynamics calculation of isovector form factors and the first few moments of the isovector structure functions of the nucleon. The calculation employs two degenerate dynamical flavors of domain-wall fermions, resulting in good control of chiral symmetry breaking. Non-perturbative renormalization of the relevant quark currents is performed where necessary. The inverse lattice spacing, a1a^{-1}, is about 1.7 GeV. We use degenerate up and down dynamical quark masses around 1, 3/4 and 1/2 the strange quark mass. The physical volume of the lattice is about (1.9fm)3(1.9{fm})^3. The ratio of the isovector vector to axial charges, gA/gVg_A/g_V, trends a bit lower than the experimental value as the quark mass is reduced toward the physical point. We calculate the momentum-transfer dependences of the isovector vector, axial, induced tensor and induced pseudoscalar form factors. The Goldberger-Treiman relation holds at low momentum transfer and yields a pion-nucleon coupling, gπNN=15.5(1.4)g_{\pi NN} = 15.5(1.4), where the quoted error is only statistical. We find that the flavor non-singlet quark momentum fraction ud_{u-d} and quark helicity fraction ΔuΔd_{\Delta u-\Delta d} overshoot their experimental values after linear chiral extrapolation. We obtain the transversity, δuδd=0.93(6)_{\delta u-\delta d} = 0.93(6) in MSˉ\bar{\rm MS} at 2 GeV and a twist-3 polarized moment, d1d_1, appears small, suggesting that the Wandzura-Wilczek relation holds approximately. We discuss the systematic errors in the calculation, with particular attention paid to finite-volume effects, excited-state contamination, and chiral extrapolations.Comment: 28 pages in two columns; 37 figures, 12 table

    Eddy current studies from the undulator-based positron source target wheel prototype

    Get PDF
    The ef­fi­cien­cy of fu­ture positron sources for the next gen­er­a­tion of high-en­er­gy par­ti­cle col­lid­ers (e.g. ILC, CLIC, LHeC) can be im­proved if the positron-pro­duc­tion tar­get is im­mersed in the mag­net­ic field of ad­ja­cent cap­ture op­tics. If the tar­get is also ro­tat­ing due to heat de­po­si­tion con­sid­er­a­tions then eddy cur­rents may be in­duced and lead to ad­di­tion­al heat­ing and stress­es. In this paper we pre­sent data from a ro­tat­ing tar­get wheel pro­to­type for the base­line ILC positron source. The wheel has been op­er­at­ed at rev­o­lu­tion rates up to 1800rpm in fields of the order of 1 Tesla. Com­par­isons are made be­tween torque data ob­tained from a trans­duc­er on the tar­get drive shaft and the re­sults of fi­nite-el­e­ment sim­u­la­tions. Ro­tor­dy­nam­ics is­sues are pre­sent­ed and fu­ture ex­per­i­ments on other as­pects of the positron source tar­get sta­tion are con­sid­ered

    Long-lived photoexcited states in polydiacetylenes with different molecular and supramolecular organization

    Get PDF
    With the aim of determining the importance of the molecular and supramolecular organization on the excited states of polydiacetylenes, we have studied the photoinduced absorption spectra of the red form of poly[1,6-bis(3,6-didodecyl-N-carbazolyl)-2,4-hexadiyne] (polyDCHD-S) and the results compared with those of the blue form of the same polymer. An interpretation of the data is given in terms of both the conjugation length and the interbackbone separation also in relation to the photoinduced absorption spectra of both blue and red forms of poly[1,6-bis(N-carbazolyl)-2,4-hexadiyne] (polyDCHD), which does not carry the alkyl substituents on the carbazolyl side groups. Information on the above properties is derived from the analysis of the absorption and Raman spectra of this class of polydiacetylenes

    Hadron Structure on the Lattice

    Full text link
    A few chosen nucleon properties are described from a lattice QCD perspective: the nucleon sigma term and the scalar strangeness in the nucleon; the vector form factors in the nucleon, including the vector strangeness contribution, as well as parity breaking effects like the anapole and electric dipole moment; and finally the axial and tensor charges of the nucleon. The status of the lattice calculations is presented and their potential impact on phenomenology is discussed.Comment: 17 pages, 9 figures; proceedings of the Conclusive Symposium of the Collaborative Research Center 443 "Many-body structure of strongly interacting systems", Mainz, February 23-25, 201

    Ab-initio calculation of the electronic and optical excitations in polythiophene: effects of intra- and interchain screening

    Get PDF
    We present an calculation of the electronic and optical excitations of an isolated polythiophene chain as well as of bulk polythiophene. We use the GW approximation for the electronic self-energy and include excitonic effects by solving the electron-hole Bethe-Salpeter equation. The inclusion of interchain screening in the case of bulk polythiophene drastically reduces both the quasi-particle band gap and the exciton binding energies, but the optical gap is hardly affected. This finding is relevant for conjugated polymers in general.Comment: 4 pages, 1 figur

    The size of electron-hole pairs in pi conjugated systems

    Get PDF
    We have performed momentum dependent electron energy-loss studies of the electronic excitations in sexithiophene and compared the results to those from parent oligomers. Our experiment probes the dynamic structure factor S(q,omega)and we show that the momentum dependent intensity variation of the excitations observed can be used to extract the size of the electron-hole pair created in the excitation process. The extension of the electron-hole pairs along the molecules is comparable to the length of the molecules and thus maybe only limited by structural constraints. Consequently, the primary intramolecular electron-hole pairs are relatively weakly bound. We find no evidence for the formation of excitations localized on single thiophene units.Comment: RevTex, 3 figures, to appear in Physical Review Letter
    corecore