15 research outputs found

    Point-light biological motion perception activates human premotor cortex

    Get PDF
    Motion cues can be surprisingly powerful in defining objects and events. Specifically, a handful of point-lights attached to the joints of a human actor will evoke a vivid percept of action when the body is in motion. The perception of point-light biological motion activates posterior cortical areas of the brain. On the other hand, observation of others' actions is known to also evoke activity in motor and premotor areas in frontal cortex. In the present study, we investigated whether point-light biological motion animations would lead to activity in frontal cortex as well. We performed a human functional magnetic resonance imaging study on a high-field-strength magnet and used a number of methods to increase signal, as well as cortical surface-based analysis methods. Areas that responded selectively to point-light biological motion were found in lateral and inferior temporal cortex and in inferior frontal cortex. The robust responses we observed in frontal areas indicate that these stimuli can also recruit action observation networks, although they are very simplified and characterize actions by motion cues alone. The finding that even point-light animations evoke activity in frontal regions suggests that the motor system of the observer may be recruited to "fill in" these simplified displays

    Heterogeneous origins of human sleep spindles in different cortical layers

    Get PDF
    Sleep spindles are a cardinal feature in human NREM sleep and may be important for memory consolidation. We studied the intracortical organization of spindles in men and women by recording spontaneous sleep spindles from different cortical layers using linear microelectrode arrays. Two patterns of spindle generation were identified using visual inspection, and confirmed with factor analysis. Spindles (10-16Hz) were largest and most common in upper and middle channels, with limited involvement of deep channels. Many spindles were observed in only upper or only middle channels, but about half occurred in both. In spindles involving both middle and upper channels, the spindle envelope onset in middle channels led upper by approximately 25-50ms on average. The phase relationship between spindle waves in upper and middle channels varied dynamically within spindle epochs, and across individuals. Current source density analysis demonstrated that upper and middle channel spindles were both generated by an excitatory supragranular current sink while an additional deep source was present for middle channel spindles only. Only middle channel spindles were accompanied by deep low (25-50Hz) and high (70-170Hz) gamma activity. These results suggest that upper channel spindles are generated by supragranular pyramids, and middle channel by infragranular. Possibly, middle channel spindles are generated by core thalamocortical afferents, and upper channel by matrix. The concurrence of these patterns could reflect engagement of cortical circuits in the integration of more focal (core) and distributed (matrix) aspects of memory. These results demonstrate that at least two distinct intracortical systems generate human sleep spindles.SIGNIFICANCE STATEMENTBursts of approximately 14Hz oscillations, lasting about a second, have been recognized for over 80 years as cardinal features of mammalian sleep. Recent findings suggest that they play a key role in organizing cortical activity during memory consolidation. We used linear microelectrode arrays to study their intracortical organization in humans. We found that spindles could be divided into two types. One mainly engages upper layers of the cortex, which are considered to be specialized for associative activity. The other engages both upper and middle layers, including those devoted to sensory input. The interaction of these two spindle types may help organize the interaction of sensory and associative aspects of memory consolidation

    Long-term influence of normal variation in neonatal characteristics on human brain development

    Get PDF
    It is now recognized that a number of cognitive, behavioral, and mental health outcomes across the lifespan can be traced to fetal development. Although the direct mediation is unknown, the substantial variance in fetal growth, most commonly indexed by birth weight, may affect lifespan brain development. We investigated effects of normal variance in birth weight on MRI-derived measures of brain development in 628 healthy children, adolescents, and young adults in the large-scale multicenter Pediatric Imaging, Neurocognition, and Genetics study. This heterogeneous sample was recruited through geographically dispersed sites in the United States. The influence of birth weight on cortical thickness, surface area, and striatal and total brain volumes was investigated, controlling for variance in age, sex, household income, and genetic ancestry factors. Birth weight was found to exert robust positive effects on regional cortical surface area in multiple regions as well as total brain and caudate volumes. These effects were continuous across birth weight ranges and ages and were not confined to subsets of the sample. The findings show that (i) aspects of later child and adolescent brain development are influenced at birth and (ii) relatively small differences in birth weight across groups and conditions typically compared in neuropsychiatric research (e.g., Attention Deficit Hyperactivity Disorder, schizophrenia, and personality disorders) may influence group differences observed in brain parameters of interest at a later stage in life. These findings should serve to increase our attention to early influences

    Divergent Cortical Generators of MEG and EEG during Human Sleep Spindles Suggested by Distributed Source Modeling

    Get PDF
    Background: Sleep spindles are,1-second bursts of 10–15 Hz activity, occurring during normal stage 2 sleep. In animals, sleep spindles can be synchronous across multiple cortical and thalamic locations, suggesting a distributed stable phaselocked generating system. The high synchrony of spindles across scalp EEG sites suggests that this may also be true in humans. However, prior MEG studies suggest multiple and varying generators. Methodology/Principal Findings: We recorded 306 channels of MEG simultaneously with 60 channels of EEG during naturally occurring spindles of stage 2 sleep in 7 healthy subjects. High-resolution structural MRI was obtained in each subject, to define the shells for a boundary element forward solution and to reconstruct the cortex providing the solution space for a noise-normalized minimum norm source estimation procedure. Integrated across the entire duration of all spindles, sources estimated from EEG and MEG are similar, diffuse and widespread, including all lobes from both hemispheres. However, the locations, phase and amplitude of sources simultaneously estimated from MEG versus EEG are highly distinct during the same spindles. Specifically, the sources estimated from EEG are highly synchronous across the cortex, whereas those from MEG rapidly shift in phase, hemisphere, and the location within the hemisphere. Conclusions/Significance: The heterogeneity of MEG sources implies that multiple generators are active during huma

    Leveraging the Adolescent Brain Cognitive Development Study to improve behavioral prediction from neuroimaging in smaller replication samples

    No full text
    Neuroimaging is a popular method to map brain structural and functional patterns to complex human traits. Recently published observations cast doubt upon these prospects, particularly for prediction of cognitive traits from structural and resting state functional MRI. We leverage baseline data from thousands of children in the Adolescent Brain Cognitive DevelopmentSM (ABCD®) Study to inform the replication sample size required with univariate and multivariate methods across different imaging modalities to detect reproducible brain-behavior associations. We demonstrate that by applying multivariate methods to high-dimensional brain imaging data, we can capture lower dimensional patterns of structural and functional brain architecture that correlate robustly with cognitive phenotypes and are reproducible with only 41 individuals in the replication sample for working memory-related functional MRI, and ~100 subjects for structural and resting state MRI. Even with 100 random re-samplings of 100 subjects in discovery, prediction can be adequately powered with 66 subjects in replication for multivariate prediction of cognition with working memory task functional MRI. These results point to an important role for neuroimaging in translational neurodevelopmental research and showcase how findings in large samples can inform reproducible brain-behavior associations in small sample sizes that are at the heart of many research programs and grants

    Williams syndrome-specific neuroanatomical profile and its associations with behavioral features

    No full text
    Williams Syndrome (WS) is a rare genetic disorder with unique behavioral features. Yet the rareness of WS has limited the number and type of studies that can be conducted in which inferences are made about how neuroanatomical abnormalities mediate behaviors. In this study, we extracted a WS-specific neuroanatomical profile from structural magnetic resonance imaging (MRI) measurements and tested its association with behavioral features of WS. Using a WS adult cohort (22 WS, 16 healthy controls), we modeled a sparse representation of a WS-specific neuroanatomical profile. The predictive performances are robust within the training cohort (10-fold cross-validation, AUC=1.0) and accurately identify all WS individuals in an independent child WS cohort (seven WS, 59 children with diverse developmental status, AUC=1.0). The WS-specific neuroanatomical profile includes measurements in the orbitofrontal cortex, superior parietal cortex, Sylvian fissures, and basal ganglia, and variability within these areas related to the underlying size of hemizygous deletion in patients with partial deletions. The profile intensity mediated the overall cognitive impairment as well as personality features related to hypersociability. Our results imply that the unique behaviors in WS were mediated through the constellation of abnormalities in cortical-subcortical circuitry consistent in child WS and adult WS. The robustness of the derived WS-specific neuroanatomical profile also demonstrates the potential utility of our approach in both clinical and research applications. Keywords: Williams Syndrome, Neuroanatomy, Social cognition, Magnetic resonance imagin

    Genetic topography of brain morphology

    No full text
    Animal data show that cortical development is initially patterned by genetic gradients largely along three orthogonal axes. We previously reported differences in genetic influences on cortical surface area along an anterior-posterior axis using neuroimaging data of adult human twins. Here, we demonstrate differences in genetic influences on cortical thickness along a dorsal-ventral axis in the same cohort. The phenomenon of orthogonal gradations in cortical organization evident in different structural and functional properties may originate from genetic gradients. Another emerging theme of cortical patterning is that patterns of genetic influences recapitulate the spatial topography of the cortex within hemispheres. The genetic patterning of both cortical thickness and surface area corresponds to cortical functional specializations. Intriguingly, in contrast to broad similarities in genetic patterning, two sets of analyses distinguish cortical thickness and surface area genetically. First, genetic contributions to cortical thickness and surface area are largely distinct; there is very little genetic correlation (i.e., shared genetic influences) between them. Second, organizing principles among genetically defined regions differ between thickness and surface area. Examining the structure of the genetic similarity matrix among clusters revealed that, whereas surface area clusters showed great genetic proximity with clusters from the same lobe, thickness clusters appear to have close genetic relatedness with clusters that have similar maturational timing. The discrepancies are in line with evidence that the two traits follow different mechanisms in neurodevelopment. Our findings highlight the complexity of genetic influences on cortical morphology and provide a glimpse into emerging principles of genetic organization of the cortex.National Institute on Aging (Grant AG022381)National Institute on Aging (Grant AG018386)National Institute on Aging (Grant AG018384)National Institute on Aging (Grant AG022982)National Institute on Aging (Grant AG031224)National Institute on Drug Abuse (Grant DA029475)National Institute of Neurological Disorders and Stroke (U.S.) (Grant NS056883

    Neuroanatomical assessment of biological maturity

    No full text
    Structural MRI allows unparalleled in vivo study of the anatomy of the developing human brain. For more than two decades, MRI research has revealed many new aspects of this multifaceted maturation process, significantly augmenting scientific knowledge gathered from postmortem studies. Postnatal brain development is notably protracted and involves considerable changes in cerebral cortical, subcortical, and cerebellar structures, as well as significant architectural changes in white matter fiber tracts (see [12]). Although much work has described isolated features of neuroanatomical development, it remains a critical challenge to characterize the multidimensional nature of brain anatomy, capturing different phases of development among individuals. Capitalizing on key advances in multisite, multimodal MRI, and using cross-validated nonlinear modeling, we demonstrate that developmental brain phase can be assessed with much greater precision than has been possible using other biological measures, accounting for more than 92% of the variance in age. Further, our composite metric of morphology, diffusivity, and signal intensity shows that the average difference in phase among children of the same age is only about 1 year, revealing for the first time a latent phenotype in the human brain for which maturation timing is tightly controlled
    corecore