46 research outputs found

    Determining weight-bearing tissue condition using peak reactive hyperemia response trend and ultrasonographic features: implications for pressure ulcer prevention

    Get PDF
    Frequent repositioning is important to prevent pressure ulcer (PU) development, by relieving pressure and recovering damages on skin areas induced by repetitive loading. Although repositioning is the gold standard to prevent PU, there is currently no strategy for determining tissue condition under preventive approaches. In this study, the peak reactive hyperemia (RH) trends and ultrasonographic (US) features are compared with the tissue condition under histopathological examination to determine the potential use of these features in determining the tissue condition noninvasively. Twenty-one male Sprague–Dawley rats (seven per group), with body weight of 385–485 g, were categorized into three groups and subjected to different recovery times, each with three repetitive loading cycles at skin tissues above of right trochanter area. The first, second, and third groups were subjected to short (3 minutes), moderate (10 minutes), and prolonged (40 minutes) recovery, respectively, while applying fixed loading time and pressure (10 minutes and 50 mmHg, respectively), to provide different degree of recovery and tissue conditions (tissue damage and tissue recovery). Peak RH was measured in the three cycles to determine RH trend (increasing, decreasing, and inconsistent). All rat tissues were evaluated using ultrasound at pre- and post-experiment and rated by two raters to categorize the severity of tissue changes (no, mild, moderate, and severe). The tissue condition was also evaluated using histopathological examination to distinguish between normal and abnormal tissues. Most of the samples with increasing RH trend is related to abnormal tissue (71%); while inconsistent RH trends is more related to normal tissue (82%). There is no relationship between the tissue conditions evaluated under ultrasonographic and histopathological examination. Peak RH trend over repetitive loading may serve as a new feature for determining the tissue condition that leading to pressure ulcer

    Fluorescence multispectral imaging-based diagnostic system for atherosclerosis

    Get PDF
    Background: Composition of atherosclerotic arterial walls is rich in lipids such as cholesterol, unlike normal arterial walls. In this study, we aimed to utilize this difference to diagnose atherosclerosis via multispectral fluorescence imaging, which allows for identification of fluorescence originating from the substance in the arterial wall. Methods: The inner surface of extracted arteries (rabbit abdominal aorta, human coronary artery) was illuminated by 405 nm excitation light and multispectral fluorescence images were obtained. Pathological examination of human coronary artery samples were carried out and thickness of arteries were calculated by measuring combined media and intima thickness. Results: The fluorescence spectra in atherosclerotic sites were different from those in normal sites. Multiple regions of interest (ROI) were selected within each sample and a ratio between two fluorescence intensity differences (where each intensity difference is calculated between an identifier wavelength and a base wavelength) from each ROI was determined, allowing for discrimination of atherosclerotic sites. Fluorescence intensity and thickness of artery were found to be significantly correlated. Conclusions: These results indicate that multispectral fluorescence imaging provides qualitative and quantitative evaluations of atherosclerosis and is therefore a viable method of diagnosing the disease

    Hybrid Equation/Agent-Based Model of Ischemia-Induced Hyperemia and Pressure Ulcer Formation Predicts Greater Propensity to Ulcerate in Subjects with Spinal Cord Injury

    Get PDF
    Pressure ulcers are costly and life-threatening complications for people with spinal cord injury (SCI). People with SCI also exhibit differential blood flow properties in non-ulcerated skin. We hypothesized that a computer simulation of the pressure ulcer formation process, informed by data regarding skin blood flow and reactive hyperemia in response to pressure, could provide insights into the pathogenesis and effective treatment of post-SCI pressure ulcers. Agent-Based Models (ABM) are useful in settings such as pressure ulcers, in which spatial realism is important. Ordinary Differential Equation-based (ODE) models are useful when modeling physiological phenomena such as reactive hyperemia. Accordingly, we constructed a hybrid model that combines ODEs related to blood flow along with an ABM of skin injury, inflammation, and ulcer formation. The relationship between pressure and the course of ulcer formation, as well as several other important characteristic patterns of pressure ulcer formation, was demonstrated in this model. The ODE portion of this model was calibrated to data related to blood flow following experimental pressure responses in non-injured human subjects or to data from people with SCI. This model predicted a higher propensity to form ulcers in response to pressure in people with SCI vs. non-injured control subjects, and thus may serve as novel diagnostic platform for post-SCI ulcer formation. © 2013 Solovyev et al

    C2-O-sLeX Glycoproteins Are E-Selectin Ligands that Regulate Invasion of Human Colon and Hepatic Carcinoma Cells

    Get PDF
    Similar to mechanisms of recruitment of activated leukocytes to inflamed tissues, selectins mediate adhesion and extravasation of circulating cancer cells. Our objective was to determine whether sialyl Lewis X modified core 2 O-glycans (C2-O-sLeX) present on colon and hepatic carcinoma cells promote their adhesion and invasion. We examined membrane expression of C2-O-sLeX, selectin binding, invasion of human colon and hepatic carcinoma cell lines, and mRNA levels of alpha-2,3 fucosyltransferase (FucT-III) and core 2 beta-1,6 N-acetylglucosaminyltransferase (C2GnT1) genes, necessary for C2-O-sLeX synthesis, by quantitative reverse-transcriptase (RT) PCR. Synthesis of core 2 branched O-glycans decorated by sLeX is dependent on C2GnT1 function and thus we determined enzyme activity of C2GnT1. The cell lines that expressed C2GnT1 and FucT-III mRNA by quantitative RT-PCR were highly positive for C2-O-sLeX by flow cytometry, and colon carcinoma cells possessed highly active C2GnT1 enzyme. Cells bound avidly to E-selection but not to P- and L-selectin. Gene knock-down of C2GnT1 in colon and hepatic carcinoma cells using short hairpin RNAs (shRNA) resulted in a 40–90% decrease in C2-O-sLeX and a 30–50% decrease in E-selectin binding compared to control cells. Invasion of hepatic and colon carcinoma cells containing C2GnT1 shRNA was significantly reduced compared to control cells in Matrigel assays and C2GnT1 activity was down-regulated in the latter cells. The sLeX epitope was predominantly distributed on core 2 O-glycans on colon and hepatic carcinoma cells. Our findings indicate that C2GnT1 gene expression and the resulting C2-O-sLeX carbohydrates produced mediate the adhesive and invasive behaviors of human carcinomas which may influence their metastatic potential

    Weibull-Distributed Ground Clutter

    No full text
    corecore