1,393 research outputs found

    Positronium Hyperfine Splitting in Non-commutative Space at the Order α6\alpha^6

    Full text link
    We obtain positronium Hyperfine Splitting owing to the non-commutativity of space and show that, in the leading order, it is proportional to θα6\theta \alpha^6 where, θ\theta is the parameter of non-commutativity. It is also shown that spatial non-commutativity splits the spacing between n=2n=2 triplet excited levels E(23S1)E(23P2)E(2^3S_1)\to E(2^3P_2) which provides an experimental test on the non-commutativity of space.Comment: 7 pages, 2 figures, to appear in Phys. Rev.

    Increasing heat storage by wearing extra clothing during upper body exercise up-regulates heat shock protein 70 but does not modify the cytokine response

    Get PDF
    Plasma heat shock protein 70 (HSP70) concentrations rise during heat stress, which can independently induce cytokine production. Upper body exercise normally results in modest body temperature elevations. The aim of this study was to investigate the impacts of additional clothing on the body temperature, cytokine and HSP70 responses during this exercise modality. Thirteen males performed 45-min constant-load arm cranking at 63% maximum aerobic power (62 ± 7%V̇O2peak) in either a non-permeable whole-body suit (intervention, INT) or shorts and T-shirt (control, CON). Exercise resulted in a significant increase of IL-6 and IL-1ra plasma concentrations (P 0.19). The increase in HSP70 from pre to post was only significant for INT (0.12 ± 0.11ng∙mL−1, P < 0.01 vs. 0.04 ± 0.18 ng∙mL−1, P = 0.77). Immediately following exercise, Tcore was elevated by 0.46 ± 0.29 (INT) and 0.37 ± 0.23ºC (CON), respectively (P < 0.01), with no difference between conditions (P = 0.16). The rise in mean Tskin (2.88 ± 0.50 and 0.30 ± 0.89ºC, respectively) and maximum heat storage (3.24 ± 1.08 and 1.20 ± 1.04 J∙g−1, respectively) was higher during INT (P < 0.01). Despite large differences in heat storage between conditions, the HSP70 elevations during INT, even though significant, were very modest. Possibly, the Tcore elevations were too low to induce a more pronounced HSP70 response to ultimately affect cytokine productio

    S-duality in Twistor Space

    Get PDF
    In type IIB string compactifications on a Calabi-Yau threefold, the hypermultiplet moduli space MHM_H must carry an isometric action of the modular group SL(2,Z), inherited from the S-duality symmetry of type IIB string theory in ten dimensions. We investigate how this modular symmetry is realized at the level of the twistor space of MHM_H, and construct a general class of SL(2,Z)-invariant quaternion-Kahler metrics with two commuting isometries, parametrized by a suitably covariant family of holomorphic transition functions. This family should include MHM_H corrected by D3-D1-D(-1)-instantons (with fivebrane corrections ignored) and, after taking a suitable rigid limit, the Coulomb branch of five-dimensional N=2 gauge theories compactified on a torus, including monopole string instantons. These results allow us to considerably simplify the derivation of the mirror map between type IIA and IIB fields in the sector where only D1-D(-1)-instantons are retained.Comment: 29 pages, 1 figur

    D3-instantons, Mock Theta Series and Twistors

    Get PDF
    The D-instanton corrected hypermultiplet moduli space of type II string theory compactified on a Calabi-Yau threefold is known in the type IIA picture to be determined in terms of the generalized Donaldson-Thomas invariants, through a twistorial construction. At the same time, in the mirror type IIB picture, and in the limit where only D3-D1-D(-1)-instanton corrections are retained, it should carry an isometric action of the S-duality group SL(2,Z). We prove that this is the case in the one-instanton approximation, by constructing a holomorphic action of SL(2,Z) on the linearized twistor space. Using the modular invariance of the D4-D2-D0 black hole partition function, we show that the standard Darboux coordinates in twistor space have modular anomalies controlled by period integrals of a Siegel-Narain theta series, which can be canceled by a contact transformation generated by a holomorphic mock theta series.Comment: 42 pages; discussion of isometries is amended; misprints correcte

    TeV Scale Implications of Non Commutative Space time in Laboratory Frame with Polarized Beams

    Full text link
    We analyze e+eγγe^{+}e^{-}\rightarrow \gamma\gamma, eγeγe^{-}\gamma \rightarrow e^{-}\gamma and γγe+e\gamma\gamma \rightarrow e^{+}e^{-} processes within the Seiberg-Witten expanded noncommutative scenario using polarized beams. With unpolarized beams the leading order effects of non commutativity starts from second order in non commutative(NC) parameter i.e. O(Θ2)O(\Theta^2), while with polarized beams these corrections appear at first order (O(Θ)O(\Theta)) in cross section. The corrections in Compton case can probe the magnetic component(ΘB\vec{\Theta}_B) while in Pair production and Pair annihilation probe the electric component(ΘE\vec{\Theta}_E) of NC parameter. We include the effects of earth rotation in our analysis. This study is done by investigating the effects of non commutativity on different time averaged cross section observables. The results which also depends on the position of the collider, can provide clear and distinct signatures of the model testable at the International Linear Collider(ILC).Comment: 22 pages, 19 figures, new comments and references added, few typos corrected, Published in JHE

    Unquenched flavor and tropical geometry in strongly coupled Chern-Simons-matter theories

    Full text link
    We study various aspects of the matrix models calculating free energies and Wilson loop observables in supersymmetric Chern-Simons-matter theories on the three-sphere. We first develop techniques to extract strong coupling results directly from the spectral curve describing the large N master field. We show that the strong coupling limit of the gauge theory corresponds to the so-called tropical limit of the spectral curve. In this limit, the curve degenerates to a planar graph, and matrix model calculations reduce to elementary line integrals along the graph. As an important physical application of these tropical techniques, we study N=3 theories with fundamental matter, both in the quenched and in the unquenched regimes. We calculate the exact spectral curve in the Veneziano limit, and we evaluate the planar free energy and Wilson loop observables at strong coupling by using tropical geometry. The results are in agreement with the predictions of the AdS duals involving tri-Sasakian manifoldsComment: 32 pages, 7 figures. v2: small corrections, added an Appendix on the relation with the approach of 1011.5487. v3: further corrections and clarifications, final version to appear in JHE

    Nonperturbative aspects of ABJM theory

    Full text link
    Using the matrix model which calculates the exact free energy of ABJM theory on S^3 we study non-perturbative effects in the large N expansion of this model, i.e., in the genus expansion of type IIA string theory on AdS4xCP^3. We propose a general prescription to extract spacetime instanton actions from general matrix models, in terms of period integrals of the spectral curve, and we use it to determine them explicitly in the ABJM matrix model, as exact functions of the 't Hooft coupling. We confirm numerically that these instantons control the asymptotic growth of the genus expansion. Furthermore, we find that the dominant instanton action at strong coupling determined in this way exactly matches the action of an Euclidean D2-brane instanton wrapping RP^3.Comment: 26 pages, 14 figures. v2: small corrections, final version published in JHE
    corecore