442 research outputs found

    Compositional Solution Space Quantification for Probabilistic Software Analysis

    Get PDF
    Probabilistic software analysis aims at quantifying how likely a target event is to occur during program execution. Current approaches rely on symbolic execution to identify the conditions to reach the target event and try to quantify the fraction of the input domain satisfying these conditions. Precise quantification is usually limited to linear constraints, while only approximate solutions can be provided in general through statistical approaches. However, statistical approaches may fail to converge to an acceptable accuracy within a reasonable time. We present a compositional statistical approach for the efficient quantification of solution spaces for arbitrarily complex constraints over bounded floating-point domains. The approach leverages interval constraint propagation to improve the accuracy of the estimation by focusing the sampling on the regions of the input domain containing the sought solutions. Preliminary experiments show significant improvement on previous approaches both in results accuracy and analysis time

    Autistic traits modulate cortical responses to affective but not discriminative touch

    Get PDF
    The sense of touch is primarily considered a discriminative and exteroceptive sense, facilitating the detection, manipulation and exploration of objects, via an array of low threshold mechanoreceptors and fast conducting AĪ² afferents. However, a class of unmyelinated, low threshold mechanoreceptors identified in the hairy skin of mammals have been proposed to constitute a second, anatomically distinct system coding the affective qualities of touch. Unlike AĪ²s, which increase their firing rate linearly with the velocity of a stimulus moving across their receptive field, the response of these C-tactile afferents (CTs) is described by an inverted ā€˜Uā€™ curve fit, responding optimally to a skin temperature stimulus moving at between 1-10cm/s. Given the distinct velocity tuning of these fast and slow touch fibres, here we used ERPs to compare the time course of neural responses to 1st (fast) and 2nd (slow) touch systems. We identified a higher amplitude P300 in response to fast, AĪ² targeted, versus slow CT-targeted, stroking touch. In contrast, we identified a previously described, Cfibre specific, ultra-late-potential (ULP) associated with CT-targeted input. Of special note as regards the function of CTs is that the amplitude of the ULP was negatively correlated with self-reported levels of autistic traits, which is consistent with the hypothesised affective and social significance of this response. Taken together these findings provide further support for distinct discriminative and affective touch systems and suggests the temporal resolution of EEG provides an as yet underutilised tool for exploring individual differences in response sensitivity to CT targeted touch

    Distributed Response Time Analysis of GSPN Models with MapReduce

    Get PDF
    widely used in the performance analysis of computer and communications systems. Response time densities and quantiles are often key outputs of such analysis. These can be extracted from a GSPNā€™s underlying semi-Markov process using a method based on numerical Laplace transform inversion. This method typically requires the solution of thousands of systems of complex linear equations, each of rank n, where n is the number of states in the model. For large models substantial processing power is needed and the computation must therefore be distributed. This paper describes the implementation of a Response Time Analysis module for the Platform Independent Petri net Editor (PIPE2) which interfaces with Hadoop, an open source implementation of Googleā€™s MapReduce distributed programming environment, to provide distributed calculation of response time densities in GSPN models. The software is validated with analytically calculated results as well as simulated ones for larger models. Excellent scalability is shown. I

    16S sequencing and functional analysis of the fecal microbiome during treatment of newly diagnosed pediatric inflammatory bowel disease

    Get PDF
    JJA is funded by a National Institute of Health Research Academic Clinical Fellowship and has received an Action Medical Research training fellowship. TC is funded by a Crohnā€™s in Childhood research association fellowship. CMC received a PhD studentship from SULSA Spirit industrial studentship. The NGS analysis was made possible by the award of a grant from the Source Bioscience 110th year anniversary promotion to CMC. The Rowett Institute receives funding from the Scottish Government (RESAS).Peer reviewedPublisher PD

    Approaching the diagnosis of growth-restricted neonates: a cohort study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The consequences of <it>in utero </it>growth restriction have been attracting scholarly attention for the past two decades. Nevertheless, the diagnosis of growth-restricted neonates is as yet an unresolved issue. Aim of this study is the evaluation of the performance of simple, common indicators of nutritional status, which are used in the identification of growth-restricted neonates.</p> <p>Methods</p> <p>In a cohort of 418 consecutively born term and near term neonates, four widely used anthropometric indices of body proportionality and subcutaneous fat accretion were applied, singly and in combination, as diagnostic markers for the detection of growth-restricted babies. The concordance of the indices was assessed in terms of positive and negative percent agreement and of Cohen's kappa.</p> <p>Results</p> <p>The agreement between the anthropometric indices was overall poor with a highest positive percent agreement of 62.5% and a lowest of 27.9% and the Īŗ ranging between 0.19 and 0.58. Moreover, 6% to 32% of babies having abnormal values in just one index were apparently well-grown and the median birth weight centile of babies having abnormal values of either of two indices was found to be as high as the 46<sup>th </sup>centile for gestational age (95%CI 35.5 to 60.4 and 29.8 to 63.9, respectively). On the contrary, the combination of anthropometric indices appeared to have better distinguishing properties among apparently and not apparently well-grown babies. The median birth weight centile of babies having abnormal values in two (or more) indices was the 11<sup>th </sup>centile for gestational age (95%CI 6.3 to 16.3).</p> <p>Conclusions</p> <p>Clinical assessment and anthropometric indices in combination can define a reference standard with better performance compared to the same indices used in isolation. This approach offers an easy-to-use tool for bedside diagnosis of <it>in utero </it>growth restriction.</p

    ChemBank: a small-molecule screening and cheminformatics resource database

    Get PDF
    ChemBank (http://chembank.broad.harvard.edu/) is a public, web-based informatics environment developed through a collaboration between the Chemical Biology Program and Platform at the Broad Institute of Harvard and MIT. This knowledge environment includes freely available data derived from small molecules and small-molecule screens and resources for studying these data. ChemBank is unique among small-molecule databases in its dedication to the storage of raw screening data, its rigorous definition of screening experiments in terms of statistical hypothesis testing, and its metadata-based organization of screening experiments into projects involving collections of related assays. ChemBank stores an increasingly varied set of measurements derived from cells and other biological assay systems treated with small molecules. Analysis tools are available and are continuously being developed that allow the relationships between small molecules, cell measurements, and cell states to be studied. Currently, ChemBank stores information on hundreds of thousands of small molecules and hundreds of biomedically relevant assays that have been performed at the Broad Institute by collaborators from the worldwide research community. The goal of ChemBank is to provide life scientists unfettered access to biomedically relevant data and tools heretofore available primarily in the private sector

    V3 Loop Truncations in HIV-1 Envelope Impart Resistance to Coreceptor Inhibitors and Enhanced Sensitivity to Neutralizing Antibodies

    Get PDF
    The V1/V2 region and the V3 loop of the human immunodeficiency virus type I (HIV-1) envelope (Env) protein are targets for neutralizing antibodies and also play an important functional role, with the V3 loop largely determining whether a virus uses CCR5 (R5), CXCR4 (X4), or either coreceptor (R5X4) to infect cells. While the sequence of V3 is variable, its length is highly conserved. Structural studies indicate that V3 length may be important for interactions with the extracellular loops of the coreceptor. Consistent with this view, genetic truncation of the V3 loop is typically associated with loss of Env function. We removed approximately one-half of the V3 loop from three different HIV-1 strains, and found that only the Env protein from the R5X4 strain R3A retained some fusion activity. Loss of V1/V2 (Ī”V1/V2) was well tolerated by this virus. Passaging of virus with the truncated V3 loop resulted in the derivation of a virus strain that replicated with wild-type kinetics. This virus, termed TA1, retained the V3 loop truncation and acquired several adaptive changes in gp120 and gp41. TA1 could use CCR5 but not CXCR4 to infect cells, and was extremely sensitive to neutralization by HIV-1 positive human sera, and by antibodies to the CD4 binding site and to CD4-induced epitopes in the bridging sheet region of gp120. In addition, TA1 was completely resistant to CCR5 inhibitors, and was more dependent upon the N-terminal domain of CCR5, a region of the receptor that is thought to contact the bridging sheet of gp120 and the base of the V3 loop, and whose conformation may not be greatly affected by CCR5 inhibitors. These studies suggest that the V3 loop protects HIV from neutralization by antibodies prevalent in infected humans, that CCR5 inhibitors likely act by disrupting interactions between the V3 loop and the coreceptor, and that altered use of CCR5 by HIV-1 associated with increased sensitivity to changes in the N-terminal domain can be linked to high levels of resistance to these antiviral compounds

    HDAC1 modulates OGG1-initiated oxidative DNA damage repair in the aging brain and Alzheimerā€™s disease

    Get PDF
    DNA damage contributes to brain aging and neurodegenerative diseases. However, the factors stimulating DNA repair to stave off functional decline remain obscure. We show that HDAC1 modulates OGG1-initated 8-oxoguanine (8-oxoG) repair in the brain. HDAC1-deficient mice display age-associated DNA damage accumulation and cognitive impairment. HDAC1 stimulates OGG1, a DNA glycosylase known to remove 8-oxoG lesions that are associated with transcriptional repression. HDAC1 deficiency causes impaired OGG1 activity, 8-oxoG accumulation at the promoters of genes critical for brain function, and transcriptional repression. Moreover, we observe elevated 8-oxoG along with reduced HDAC1 activity and downregulation of a similar gene set in the 5XFAD mouse model of Alzheimerā€™s disease. Notably, pharmacological activation of HDAC1 alleviates the deleterious effects of 8-oxoG in aged wild-type and 5XFAD mice. Our work uncovers important roles for HDAC1 in 8-oxoG repair and highlights the therapeutic potential of HDAC1 activation to counter functional decline in brain aging and neurodegeneration

    HDAC1 modulates OGG1-initiated oxidative DNA damage repair in the aging brain and Alzheimerā€™s disease

    Get PDF
    DNA damage contributes to brain aging and neurodegenerative diseases. However, the factors stimulating DNA repair to stave off functional decline remain obscure. We show that HDAC1 modulates OGG1-initated 8-oxoguanine (8-oxoG) repair in the brain. HDAC1-deficient mice display age-associated DNA damage accumulation and cognitive impairment. HDAC1 stimulates OGG1, a DNA glycosylase known to remove 8-oxoG lesions that are associated with transcriptional repression. HDAC1 deficiency causes impaired OGG1 activity, 8-oxoG accumulation at the promoters of genes critical for brain function, and transcriptional repression. Moreover, we observe elevated 8-oxoG along with reduced HDAC1 activity and downregulation of a similar gene set in the 5XFAD mouse model of Alzheimerā€™s disease. Notably, pharmacological activation of HDAC1 alleviates the deleterious effects of 8-oxoG in aged wild-type and 5XFAD mice. Our work uncovers important roles for HDAC1 in 8-oxoG repair and highlights the therapeutic potential of HDAC1 activation to counter functional decline in brain aging and neurodegeneration

    From learning without limits to leading without limits: An autobiographical reflective case study of leading academic development within higher education

    Get PDF
    This autobiographical case study reflects upon how a senior academic leader repurposed the Learning without Limits pedagogical framework originally developed within UK primary and secondary school settings to inform the development of a new transformational leadership framework within a higher education setting. Kolbā€™s Experiential Learning Cycle is used to structure an analytically self-reflective account of the leadership behaviours deployed for a distributed model of academic development to be effective, viewed through the lens of Learning without Limits. As a result, a new framework to inform effective approaches to the leadership of change in higher education is suggested: Leading without Limits
    • ā€¦
    corecore