30 research outputs found

    AAK1 Identified as an Inhibitor of Neuregulin-1/ErbB4-Dependent Neurotrophic Factor Signaling Using Integrative Chemical Genomics and Proteomics

    Get PDF
    SummaryTarget identification remains challenging for the field of chemical biology. We describe an integrative chemical genomic and proteomic approach combining the use of differentially active analogs of small molecule probes with stable isotope labeling by amino acids in cell culture-mediated affinity enrichment, followed by subsequent testing of candidate targets using RNA interference-mediated gene silencing. We applied this approach to characterizing the natural product K252a and its ability to potentiate neuregulin-1 (Nrg1)/ErbB4 (v-erb-a erythroblastic leukemia viral oncogene homolog 4)-dependent neurotrophic factor signaling and neuritogenesis. We show that AAK1 (adaptor-associated kinase 1) is a relevant target of K252a, and that the loss of AAK1 alters ErbB4 trafficking and expression levels, providing evidence for a previously unrecognized role for AAK1 in Nrg1-mediated neurotrophic factor signaling. Similar strategies should lead to the discovery of novel targets for therapeutic development

    Chemical genetic strategy identifies histone deacetylase 1 (HDAC1) and HDAC2 as therapeutic targets in sickle cell disease

    Get PDF
    The worldwide burden of sickle cell disease is enormous, with over 200,000 infants born with the disease each year in Africa alone. Induction of fetal hemoglobin is a validated strategy to improve symptoms and complications of this disease. The development of targeted therapies has been limited by the absence of discrete druggable targets. We developed a unique bead-based strategy for the identification of inducers of fetal hemoglobin transcripts in primary human erythroid cells. A small-molecule screen of bioactive compounds identified remarkable class-associated activity among histone deacetylase (HDAC) inhibitors. Using a chemical genetic strategy combining focused libraries of biased chemical probes and reverse genetics by RNA interference, we have identified HDAC1 and HDAC2 as molecular targets mediating fetal hemoglobin induction. Our findings suggest the potential of isoform-selective inhibitors of HDAC1 and HDAC2 for the treatment of sickle cell disease

    Advancing drug discovery for schizophrenia

    Get PDF
    Sponsored by the New York Academy of Sciences and with support from the National Institute of Mental Health, the Life Technologies Foundation, and the Josiah Macy Jr. Foundation, "Advancing Drug Discovery for Schizophrenia" was held March 9-11 at the New York Academy of Sciences in New York City. The meeting, comprising individual talks and panel discussions, highlighted basic, clinical, and translational research approaches, all of which contribute to the overarching goal of enhancing the pharmaceutical armamentarium for treating schizophrenia. This report surveys work by the vanguard of schizophrenia research in such topics as genetic and epigenetic approaches; small molecule therapeutics; and the relationships between target genes, neuronal function, and symptoms of schizophrenia

    Combining NGN2 Programming with Developmental Patterning Generates Human Excitatory Neurons with NMDAR-Mediated Synaptic Transmission

    Get PDF
    SUMMARY Transcription factor programming of pluripotent stem cells (PSCs) has emerged as an approach to generate human neurons for disease modeling. However, programming schemes produce a variety of cell types, and those neurons that are made often retain an immature phenotype, which limits their utility in modeling neuronal processes, including synaptic transmission. We report that combining NGN2 programming with SMAD and WNT inhibition generates human patterned induced neurons (hpiNs). Single-cell analyses showed that hpiN cultures contained cells along a developmental continuum, ranging from poorly differentiated neuronal progenitors to well-differentiated, excitatory glutamatergic neurons. The most differentiated neurons could be identified using a CAMK2A::GFP reporter gene and exhibited greater functionality, including NMDAR-mediated synaptic transmission. We conclude that utilizing single-cell and reporter gene approaches for selecting successfully programmed cells for study will greatly enhance the utility of hpiNs and other programmed neuronal populations in the modeling of nervous system disorders

    SEC-TID: A label-free method for small-molecule target identification

    No full text
    Bioactive small molecules are an invaluable source of therapeutics and chemical probes for exploring biological pathways. Yet, significant hurdles in drug discovery often come from lacking a comprehensive view of the target(s) for both early tool molecules and even late-stage drugs. To address this challenge, a method is provided that allows for assessing the interactions of small molecules with thousands of targets without any need to modify the small molecule of interest or attach any component to a surface. We describe size-exclusion chromatography for target identification (SEC-TID), a method for accurately and reproducibly detecting ligand-macromolecular interactions for small molecules targeting nucleic acid and several protein classes. We report the use of SEC-TID, with a library consisting of approximately 1000 purified proteins derived from the protein databank (PDB), to identify the efficacy targets tankyrase 1 and 2 for the Wnt inhibitor XAV939. In addition, we report novel interactions for the tumor-vascular disrupting agent vadimezan/ASA404 (interacting with farnesyl pyrophosphate synthase) and the diuretic mefruside (interacting with carbonic anhydrase XIII). We believe this method can dramatically enhance our understanding of the mechanism of action and potential liabilities for small molecules in drug discovery pipelines through comprehensive profiling of candidate druggable targets. © 2014 Society for Laboratory Automation and Screening
    corecore