1,679 research outputs found

    On-line control of grasping actions: object-specific motor facilitation requires sustained visual input

    Get PDF
    Dorsal stream visual processing is generally considered to underlie visually driven action, but when subjects grasp an object from memory, as visual information is not available, ventral stream characteristics emerge. In this study we use paired-pulse transcranial magnetic stimulation (TMS) to investigate the importance of the current visual input during visuomotor grasp. Previously, the amplitude of the paired-pulse motor evoked potentials (MEPs) in hand muscles before movement onset have been shown to predict the subsequent pattern of muscle activity during grasp. Specific facilitation of paired-pulse MEPs may reflect premotor–motor (PMC–M1) cortex connectivity. Here we investigate the paired-pulse MEPs evoked under memory-cued and visually driven conditions before grasping one of two possible target objects (a handle or a disc). All trials began with a delay period of 1200 ms. Then, a TMS pulse served as the cue to reach, grasp and hold the target object for 0.5 s. Total trial length was 5 s. Both objects were continually visible in both conditions, but the way in which the target object was designated differed between conditions. In the memory-cued condition, the target object was illuminated for the first 200 ms of the trial only. In the visually driven condition, the target object was illuminated throughout the 5 s trial. Thus, the conditions differed in whether or not the object to be grasped was designated at the time of movement initiation. We found that the pattern of paired-pulse MEP facilitation matched the pattern of object-specific muscle activity only for the visually driven condition. The results suggest that PMC–M1 connectivity contributes to action selection only when immediate sensory information specifies which action to make

    Symplectic and Semiclassical Aspects of the Schl\"afli Identity

    Full text link
    The Schl\"afli identity, which is important in Regge calculus and loop quantum gravity, is examined from a symplectic and semiclassical standpoint in the special case of flat, 3-dimensional space. In this case a proof is given, based on symplectic geometry. A series of symplectic and Lagrangian manifolds related to the Schl\"afli identity, including several versions of a Lagrangian manifold of tetrahedra, are discussed. Semiclassical interpretations of the various steps are provided. Possible generalizations to 3-dimensional spaces of constant (nonzero) curvature, involving Poisson-Lie groups and q-deformed spin networks, are discussed.Comment: 40 pages, 8 figure

    Mapping the invisible hand: a body model of a phantom limb

    Get PDF
    After amputation, individuals often have vivid experiences of their absent limb (i.e., a phantom limb). Therefore, one’s conscious image of one’s body cannot depend on peripheral input only (Ramachandran & Hirstein, 1998). However, the origin of phantom sensations is hotly debated. Reports of vivid phantoms in the case of congenital absence of the limb show that memory of former body state is not necessary (Brugger et al., 2000). According to one view, phantoms may reflect innate organization of sensorimotor cortices (Melzack, 1990). Alternatively, phantoms could reflect generalization from viewing other people’s bodies (Brugger et al., 2000), a sensorimotor example of the classic theory that understanding oneself follows from understanding the “generalized other” (Mead, 1934, p. 154). Because phantom limbs cannot be stimulated, sensory testing cannot directly compare visual and somatosensory influences on representations of phantom limbs. Consequently, empirical investigation of phantoms is limited

    Body image distortions following spinal cord injury

    Get PDF
    Background: Following spinal cord injury (SCI) or anaesthesia, people may continue to experience feelings of the size, shape, and posture of their body, suggesting that the conscious body image is not fully determined by immediate sensory signals. How this body image is affected by changes in sensory inputs from, and motor outputs to the body remains unclear. Methods: We tested paraplegic and tetraplegic SCI patients on a task that yields quantitative measures of body image. Participants were presented with an anchoring stimulus on a computer screen and told to imagine that the displayed body part was part of a standing mirror image of themselves. They then identified the position on the screen, relative to the anchor, where each of several parts of their body would be located. Veridical body dimensions were identified based on measurements and photographs of participants. Results: Compared to age-matched controls, paraplegic and tetraplegic patients alike perceived their torso and limbs as elongated relative to their body width. No effects of lesion level were found. Conclusions: The common distortions in body image across patient groups, despite differing SCI levels, imply that a body image may be maintained despite chronic sensory and motor loss. Systematic alterations in body image follow SCI, though our results suggest these may reflect prolonged changes in body posture and wheelchair use, rather than loss of specific sensorimotor pathways. These findings provide new insight into how the body image is maintained, and may prove useful in treatments that intervene to manipulate the body image

    The Chandra Dust Scattering Halo of Galactic Center transient Swift J174540.7-290015

    Get PDF
    We report the detection of a dust scattering halo around a recently discovered X-ray transient, Swift J174540.7-290015, which in early February of 2016 underwent one of the brightest outbursts (F_X ~ 5e-10 erg/cm^2/s) observed from a compact object in the Galactic Center field. We analyze four Chandra images that were taken as follow-up observations to Swift discoveries of new Galactic Center transients. After adjusting our spectral extraction for the effects of detector pileup, we construct a point spread function for each observation and compare it to the GC field before the outburst. We find residual surface brightness around Swift J174540.7-290015, which has a shape and temporal evolution consistent with the behavior expected from X-rays scattered by foreground dust. We examine the spectral properties of the source, which shows evidence that the object transitioned from a soft to hard spectral state as it faded below L_X ~ 1e36 erg/s. This behavior is consistent with the hypothesis that the object is a low mass X-ray binary in the Galactic Center.Comment: Accepted for publication in Ap

    The spatial logic of fear

    Get PDF
    Peripersonal space (PPS) refers to the space surrounding the body. PPS is characterised by distinctive patterns of multisensory integration and sensory-motor interaction. In addition, facial expressions have been shown to modulate PPS representation. In this study we tested whether fearful faces lead to a different distribution of spatial attention, compared to neutral and joyful faces. Participants responded to tactile stimuli on the cheeks, while watching looming neutral, joyful (Experiment 1) or fearful (Experiment 2) faces of an avatar, appearing in far or near space. To probe spatial attention, when the tactile stimulus was delivered, a static ball briefly appeared central or peripheral in participant's vision, respectively ≈1° or ≈10° to the left or right of the face. With neutral and joyful faces, simple reactions to tactile stimuli were facilitated in near rather than in far space, replicating classic PPS effects, and in the presence of central rather than peripheral ball, suggesting that attention may be focused in the immediate surrounding of the face. However, when the face was fearful, response to tactile stimuli was modulated not only by the distance of the face from the participant, but also by the position of the ball. Specifically, in near space only, response to tactile stimuli was additionally facilitated by the peripheral compared to the central ball. These results suggest that as fearful faces come closer to the body, they promote a redirection of attention towards the periphery. Given the sensory-motor functions of PPS, this fear-evoked redirection of attention would enhance the defensive function of PPS specifically when it is most needed, i.e. when the source of threat is nearby, but its location has not yet been identified

    Mistaking opposition for autonomy: psychophysical studies on detecting choice bias

    Get PDF
    Do people know when they act freely and autonomously versus when their actions are influenced? While the human aspiration to freedom is widespread, little research has investigated how people perceive whether their choices are biased. Here, we explored how actions congruent or incongruent with suggestions are perceived as influenced or free. Across three experiments, participants saw directional stimuli cueing left or right manual responses. They were instructed to follow the cue's suggestion, oppose it or ignore it entirely to make a 'free' choice. We found that we could bias participants' 'free responses' towards adherence or opposition, by making one instruction more frequent than the other. Strikingly, participants consistently reported feeling less influenced by cues to which they responded incongruently, even when response habits effectively biased them towards such opposition behaviour. This effect was so compelling that cues that were frequently presented with the Oppose instruction became systematically judged as having less influence on behaviour, artificially increasing the sense of freedom of choice. Taken together, these findings demonstrate that acting contrarian distorts the perception of autonomy. Crucially, we demonstrate the existence of a novel illusion of freedom evoked by trained opposition. Our results have important implications for understanding mechanisms of persuasion

    The peculiar Galactic center neutron star X-ray binary XMM J174457-2850.3

    Get PDF
    The recent discovery of a milli-second radio pulsar experiencing an accretion outburst similar to those seen in low mass X-ray binaries, has opened up a new opportunity to investigate the evolutionary link between these two different neutron star manifestations. The remarkable X-ray variability and hard X-ray spectrum of this object can potentially serve as a template to search for other X-ray binary/radio pulsar transitional objects. Here we demonstrate that the transient X-ray source XMM J174457-2850.3 near the Galactic center displays similar X-ray properties. We report on the detection of an energetic thermonuclear burst with an estimated duration of ~2 hr and a radiated energy output of ~5E40 erg, which unambiguously demonstrates that the source harbors an accreting neutron star. It has a quiescent X-ray luminosity of Lx~5E32 erg/s and exhibits occasional accretion outbursts during which it brightens to Lx~1E35-1E36 erg/s for a few weeks (2-10 keV). However, the source often lingers in between outburst and quiescence at Lx~1E33-1E34 erg/s. This unusual X-ray flux behavior and its relatively hard X-ray spectrum, a power law with an index of ~1.4, could possibly be explained in terms of the interaction between the accretion flow and the magnetic field of the neutron star.Comment: 10 pages, 3 figures, 2 tables, accepted to ApJ after minor revision (provided a more detailed description of the long-term X-ray behavior in Section 3.1 and Figure 1
    corecore