9,253 research outputs found
Recommended from our members
Achilles Tendon Ruptures in Young Female Basketball Players: A Case Series.
Achilles tendon ruptures are a common entity in middle-aged male athletes. There have been limited reports of these injuries in female athletes in general and no reports that we are aware of teenage female athletes with complete tears that required surgical intervention. We present a case series of three female basketball players treated at the same institution by the same surgeon under the age of 20 over a 9-month period with complete Achilles tendon ruptures that underwent surgery. Clinicians should be aware of this pathology when seeing female athletes with calf pain
A Cellular, Language Directed Computer Architecture
If a VLSI computer architecture is to influence the field
of computing in some major way, it must have attractive properties in all important aspects affecting the design, production, and the use of the resulting computers. A computer architecture that is believed to have such properties is briefly discussed
Soluble field theory with a massless gauge invariant limit
It is shown that there exists a soluble four parameter model in (1+1)
dimensions all of whose propagators can be determined in terms of the
corresponding known propagators of the vector coupling theory. Unlike the
latter case, however, the limit of zero bare mass is nonsingular and yields a
nontrivial theory with a rigorously unbroken gauge invariance.Comment: 7 pages, revtex, no figure
Unification of the Soluble Two-dimensional vector coupling models
The general theory of a massless fermion coupled to a massive vector meson in
two dimensions is formulated and solved to obtain the complete set of Green's
functions. Both vector and axial vector couplings are included. In addition to
the boson mass and the two coupling constants, a coefficient which denotes a
particular current definition is required for a unique specification of the
model.
The resulting four parameter theory and its solution are shown to reduce in
appropriate limits to all the known soluble models, including in particular the
Schwinger model and its axial vector variant.Comment: 10 page
Gamow shell-model calculations of drip-line oxygen isotopes
We employ the Gamow shell model (GSM) to describe low-lying states of the
oxygen isotopes 24O and 25O. The many-body Schrodinger equation is solved
starting from a two-body Hamiltonian defined by a renormalized low-momentum
nucleon-nucleon (NN) interaction, and a spherical Berggren basis. The Berggren
basis treats bound, resonant, and continuum states on an equal footing, and is
therefore an appropriate representation of loosely bound and unbound nuclear
states near threshold. We show that such a basis is necessary in order to
obtain a detailed and correct description of the low-lying 1+ and 2+ excited
states in 24O. On the other hand, we find that a correct description of binding
energy systematics of the ground states is driven by proper treatment and
inclusion of many-body correlation effects. This is supported by the fact that
we get 25O unstable with respect to 24O in both oscillator and Berggren
representations starting from a 22O core. Furthermore, we show that the
structure of these loosely bound or unbound isotopes are strongly influenced by
the 1S0 component of the NN interaction. This has important consequences for
our understanding of nuclear stability.Comment: 5 pages, 3 figure
Effective Interaction Techniques for the Gamow Shell Model
We apply a contour deformation technique in momentum space to the newly
developed Gamow shell model, and study the drip-line nuclei 5He, 6He and 7He. A
major problem in Gamow shell-model studies of nuclear many-body systems is the
increasing dimensionality of many-body configurations due to the large number
of resonant and complex continuum states necessary to reproduce bound and
resonant state energies. We address this problem using two different effective
operator approaches generalized to the complex momentum plane. These are the
Lee-Suzuki similarity transformation method for complex interactions and the
multi-reference perturbation theory method. The combination of these two
approaches results in a large truncation of the relevant configurations
compared with direct diagonalization. This offers interesting perspectives for
studies of weakly bound systems.Comment: 18 pages, 17 figs, Revtex
KASPAR in the wild - Initial findings from a pilot study
This extended abstract describes the initial pilot work when evaluating the use of the UH Humanoid Robot KASPAR in a specialist nursery for children with social and communication disorders. Staff and volunteers at the nursery were trained in the use of KASPAR and are currently using KASPAR in their day to day activities in the nursery. This paper focuses on the design and results from the initial interviews with the participants. Results high-light the challenges of transferring experimental technologies like KASPAR from a research setting into everyday practice
Investigations of the lower and middle atmosphere at the Arecibo Observatory and a description of the new VHF radar project
The atmospheric science research at the Arecibo Observatory is performed by means of (active) radar methods and (passive) optical methods. The active methods utilize the 430 NHz radar, the S-band radar on 2380 MHz, and a recently constructed Very High Frequency (VHF) radar. The passive methods include measurements of the mesopause temperature by observing the rotational emissions from OH-bands. The VHF radar design is discussed
- …