159 research outputs found
Infectious diseases during the European Union training mission Mali (EUTM MLI) - a four-year experience
Background: The European Union Training Mission Mali (EUTM MLI) is a multinational military training deployment to the Western African tropical nation of Mali. Based on routinely collected disease and non-battle injury surveillance data, this study quantifies the true impact of infectious diseases for this tropical mission and potential seasonal variations in infectious disease threats. Methods: Categorized health events during the EUTM MLI mission and associated lost working days were reported using the EpiNATO-2 report. Infection-related health events were descriptively analyzed for a 4-year period from the 12th week in 2013 to the 13th week in 2017. Aggregated EpiNATO-2 data collected from all missions other than EUTM MLI were used as a comparator. Results: Among the infectious diseases reported by EUTM MLI, non-severe upper respiratory infections and gastrointestinal diseases dominated quantitatively, accounting for 1.65 and 1.42 consultations per 100 person-weeks, respectively. The number of recorded infectious disease-associated lost working days during the whole study interval was 723. Seasonal changes in disease frequency were detectable. More gastrointestinal infections were seen in the rainy season, and more respiratory infections occurred in the dry season;these were associated with peaks of more than 2.5 consultations per 100 person-weeks for both categories. Conclusions: Despite initial concerns focused on tropical infectious diseases during this mission in tropical Mali, upper respiratory tract and gastrointestinal infections predominate. The relatively low number of reported lost working days may indicate that these infections are at the milder end of the spectrum of infectious diseases despite a likely reporting bias
Artificially designed pathogens – a diagnostic option for future military deployments
Diagnostic microbial isolates of bio-safety levels 3 and 4 are difficult to handle in medical field camps under military deployment settings. International transport of such isolates is challenging due to restrictions by the International Air Transport Association. An alternative option might be inactivation and sequencing of the pathogen at the deployment site with subsequent sequence-based revitalization in well-equipped laboratories in the home country for further scientific assessment. A literature review was written based on a PubMed search. First described for poliovirus in 2002, de novo synthesis of pathogens based on their sequence information has become a well-established procedure in science. Successful syntheses have been demonstrated for both viruses and prokaryotes. However, the technology is not yet available for routine diagnostic purposes. Due to the potential utility of diagnostic sequencing and sequence-based de novo synthesis of pathogens, it seems worthwhile to establish the technology for diagnostic purposes over the intermediate term. This is particularly true for resource-restricted deployment settings, where safe handling of harmful pathogens cannot always be guaranteed. peerReviewed
Document type: Articl
Evaluation of a duplex real-time PCR in human serum for simultaneous detection and differentiation of Schistosoma mansoni and Schistosoma haematobium infections - cross-sectional study
Background: We evaluated a one-tube multiplex real-time PCR targeting DNA of Schistosoma haematobium
complex and S. mansoni complex in serum samples obtained at different German diagnostic centers.
Methods: Simplex real-time PCR protocols for the detection of the multi-copy DNA-repeats Dra1 of
S. haematobium complex and Sm1-7 of S. mansoni complex in serum were combined to a new one-tube multiplex
format. The new PCR was subjected to full validation including evaluation in a diagnostic real-life setting with
travelers and migrants. PCR results were compared with those of stool and urine microscopy, serology, and
circulating cathodic antigen (CCA) rapid diagnostic tests in urine. Sensitivity and specificity of the diagnostic
approaches were analyzed using latent class analysis (LCA).
Results: LCA assessment indicated sensitivity and specificity of 94.9% and 98.4%, respectively, for serum PCR if
serology was included in the calculation, and 100% and 95.6%, respectively, if serology was not included as a
parameter not necessarily associated with active infection. Agreement between the compared diagnostic procedures at genus level was fair (kappa 0.273) if serology was included and moderate (kappa 0.420) if serology
was not included.
Discussion: The PCR assay proved to be highly reliable for the diagnosis of schistosomiasis in travelers and
migrants
Multicentric Evaluation of SeeGene Allplex Real-Time PCR Assays Targeting 28 Bacterial, Microsporidal and Parasitic Nucleic Acid Sequences in Human Stool Samples
Prior to the implementation of new diagnostic techniques, a thorough evaluation is mandatory in order to ensure diagnostic reliability. If positive samples are scarcely available, however, such evaluations can be difficult to perform. Here, we evaluated four SeeGene Allplex real-time PCR assays amplifying a total of 28 bacteria, microsporidal and parasitic nucleic acid sequence targets in human stool samples in a multicentric approach. In the assessments with strongly positive samples, sensitivity values ranging between 13% and 100% were recorded for bacteria, between 0% and 100% for protozoa and between 7% and 100% for helminths and microsporidia; for the weakly positive samples, the recorded sensitivity values for bacteria ranged from 0% to 100%; for protozoa, from 0% to 40%; and for helminths and microsporidia, from 0% to 53%. For bacteria, the recorded specificity was in the range between 87% and 100%, while a specificity of 100% was recorded for all assessed PCRs targeting parasites and microsporidia. The intra- and inter-assay variations were generally low. Specifically for some helminth species, the sensitivity could be drastically increased by applying manual nucleic acid extraction instead of the manufacturer-recommended automatic procedure, while such effects were less obvious for the bacteria and protozoa. In summary, the testing with the chosen positive control samples showed varying degrees of discordance between the evaluated Allplex assays and the applied in-house reference assays associated with higher cycle threshold values in the Allplex assays, suggesting that samples with very low pathogen densities might be missed. As the targeted species can occur as harmless colonizers in the gut of individuals in high-endemicity settings as well, future studies should aim at assessing the clinical relevance of the latter hint.Peer Reviewe
Intracellular Persisting Staphylococcus aureus Is the Major Pathogen in Recurrent Tonsillitis
BACKGROUND: The two major indications for tonsillectomy are recurrent tonsillitis (RT) and peritonsillar abscess (PTA). Unlike PTAs, which are primarily treated surgically, RT is often cured by tonsillectomy only after a series of failed drug therapy attempts. Although the bacteriological background of RT has been studied, the reason for the lack of success of conservative therapeutic approaches is not well understood. METHODS: In a prospective study, tonsil specimens from 130 RT patients and 124 PTA patients were examined for the presence of extra- and intracellular bacteria using antibiotic protection assays. Staphylococcus aureus isolates from RT patients were characterized by pulsed-field gel electrophoresis (PFGE), spa-typing and MSCRAMM-gene-PCR. Their ability for biofilm formation was tested and their cell invasiveness was confirmed by a flow cytometric invasion assay (FACS), fluorescent in situ hybridization (FISH) and immunohistochemistry. FINDINGS: S. aureus was the predominant species (57.7%) in RT patients, whereas Streptococcus pyogenes was most prevalent (20.2%) in PTA patients. Three different assays (FACS, FISH, antibiotic protection assay) showed that nearly all RT-associated S. aureus strains were located inside tonsillar cells. Correspondingly, the results of the MSCRAMM-gene-PCRs confirmed that 87% of these S. aureus isolates were invasive strains and not mere colonizers. Based upon PFGE analyses of genomic DNA and on spa-gene typing the vast majority of the S. aureus isolates belonged to different clonal lineages. CONCLUSIONS: Our results demonstrate that intracellular residing S. aureus is the most common cause of RT and indicate that S. aureus uses this location to survive the effects of antibiotics and the host immune response. A German translation of the Abstract is provided as supplementary material (Abstract S1)
Detection of a New Resistance-Mediating Plasmid Chimera in a blaOXA-48-Positive Klebsiella pneumoniae Strain at a German University Hospital
Mobile genetic elements, such as plasmids, facilitate the spread of antibiotic resistance genes in Enterobacterales. In line with this, we investigated the plasmid-resistome of seven blaOXA-48 gene-carrying Klebsiella pneumoniae isolates, which were isolated between 2013 and 2014 at the University Medical Center in Göttingen, Germany. All isolates were subjected to complete genome sequencing including the reconstruction of entire plasmid sequences. In addition, phenotypic resistance testing was conducted. The seven isolates comprised both disease-associated isolates and colonizers isolated from five patients. They fell into two clusters of three sequence type (ST)101 and two ST11 isolates, respectively; and ST15 and ST23 singletons. The seven isolates harbored various plasmids of the incompatibility (Inc) groups IncF, IncL/M, IncN, IncR, and a novel plasmid chimera. All blaOXA-48 genes were encoded on the IncL/M plasmids. Of note, distinct phenotypical resistance patterns associated with different sets of resistance genes encoded by IncL/M and IncR plasmids were observed among isolates of the ST101 cluster in spite of high phylogenetic relatedness of the bacterial chromosomes, suggesting nosocomial transmission. This highlights the importance of plasmid uptake and plasmid recombination events for the fast generation of resistance variability after clonal transmission. In conclusion, this study contributes a piece in the puzzle of molecular epidemiology of resistance gene-carrying plasmids in K. pneumoniae in Germany.Peer Reviewe
Characterization of Salmonella enterica from invasive bloodstream infections and water sources in rural Ghana.
BACKGROUND: Non-typhoidal Salmonella (NTS) cause the majority of bloodstream infections in Ghana, however the mode of transmission and source of invasive NTS in Africa are poorly understood. This study compares NTS from water sources and invasive bloodstream infections in rural Ghana. METHODS: Blood from hospitalised, febrile children and samples from drinking water sources were analysed for Salmonella spp. Strains were serotyped to trace possible epidemiological links between human and water-derived isolates.. Antibiotic susceptibility testing was performed, RESULTS: In 2720 blood culture samples, 165 (6%) NTS were isolated. S. Typhimurium (70%) was the most common serovar followed by S. Enteritidis (8%) and S. Dublin (8%). Multidrug resistance (MDR) was found in 95 (58%) NTS isolates, including five S. Enteritidis. One S. Typhimurium showed reduced fluroquinolone susceptibility. In 511 water samples, 19 (4%) tested positive for S. enterica with two isolates being resistant to ampicillin and one isolate being resistant to cotrimoxazole. Serovars from water samples were not encountered in any of the clinical specimens. CONCLUSION: Water analyses demonstrated that common drinking water sources were contaminated with S. enterica posing a potential risk for transmission. However, a link between S. enterica from water sources and patients could not be established, questioning the ability of water-derived serovars to cause invasive bloodstream infections
Molecular Evidence for Flea-Borne Rickettsiosis in Febrile Patients from Madagascar.
Rickettsiae may cause febrile infections in humans in tropical and subtropical regions. From Madagascar, no molecular data on the role of rickettsioses in febrile patients are available. Blood samples from patients presenting with fever in the area of the capital Antananarivo were screened for the presence of rickettsial DNA. EDTA (ethylenediaminetetraacetic acid) blood from 1020 patients presenting with pyrexia > 38.5 °C was analyzed by gltA-specific qPCR. Positive samples were confirmed by ompB-specific qPCR. From confirmed samples, the gltA amplicons were sequenced and subjected to phylogenetic analysis. From five gltA-reactive samples, two were confirmed by ompB-specific qPCR. The gltA sequence in the sample taken from a 38-year-old female showed 100% homology with R. typhi. The other sample taken from a 1.5-year-old infant was 100% homologous to R. felis. Tick-borne rickettsiae were not identified. The overall rate of febrile patients with molecular evidence for a rickettsial infection from the Madagascan study site was 0.2% (2/1020 patients). Flea-borne rickettsiosis is a rare but neglected cause of infection in Madagascar. Accurate diagnosis may prompt adequate antimicrobial treatment
Classification of Salmonella enterica of the (Para-)Typhoid Fever Group by Fourier-Transform Infrared (FTIR) Spectroscopy
Typhoidal and para-typhoidal Salmonella are major causes of bacteraemia in resource-limited countries. Diagnostic alternatives to laborious and resource-demanding serotyping are essential. Fourier transform infrared spectroscopy (FTIRS) is a rapidly developing and simple bacterial typing technology. In this study, we assessed the discriminatory power of the FTIRS-based IR Biotyper (Bruker Daltonik GmbH, Bremen, Germany), for the rapid and reliable identification of biochemically confirmed typhoid and paratyphoid fever-associated Salmonella isolates. In total, 359 isolates, comprising 30 S. Typhi, 23 S. Paratyphi A, 23 S. Paratyphi B, and 7 S. Paratyphi C, respectively and other phylogenetically closely related Salmonella serovars belonging to the serogroups O:2, O:4, O:7 and O:9 were tested. The strains were derived from clinical, environmental and food samples collected at different European sites. Applying artificial neural networks, specific automated classifiers were built to discriminate typhoidal serovars from non-typhoidal serovars within each of the four serogroups. The accuracy of the classifiers was 99.9%, 87.0%, 99.5% and 99.0% for Salmonella Typhi, Salmonella Paratyphi A, B and Salmonella Paratyphi C, respectively. The IR Biotyper is a promising tool for fast and reliable detection of typhoidal Salmonella. Hence, IR biotyping may serve as a suitable alternative to conventional approaches for surveillance and diagnostic purposes
- …