179 research outputs found

    Proteins in Ionic Liquids: Reactions, Applications and Futures

    Get PDF
    Biopolymer processing and handling is greatly facilitated by the use of ionic liquids, given the increased solubility, and in somecases, structural stability imparted to these molecules. Focussing on proteins, we highlight here not just the key drivers behind protein-ionic liquid interactions that facilitate these functionalities, but address relevant current and potential applications of protein-ionic liquid interactions, including areas of future interest

    Proteins in Ionic Liquids: Reactions, Applications, and Futures

    Get PDF
    Biopolymer processing and handling is greatly facilitated by the use of ionic liquids, given the increased solubility, and in some cases, structural stability imparted to these molecules. Focussing on proteins, we highlight here not just the key drivers behind protein-ionic liquid interactions that facilitate these functionalities, but address relevant current and potential applications of protein-ionic liquid interactions, including areas of future interest

    The Quest for the Missing Dust: II -- Two Orders of Magnitude of Evolution in the Dust-to-Gas Ratio Resolved Within Local Group Galaxies

    Get PDF
    We explore evolution in the dust-to-gas ratio with density within four well-resolved Local Group galaxies - the LMC, SMC, M31, and M33. We do this using new Herschel{\it Herschel} maps, which restore extended emission that was missed by previous Herschel{\it Herschel} reductions. This improved data allows us to probe the dust-to-gas ratio across 2.5 orders of magnitude in ISM surface density. We find significant evolution in the dust-to-gas ratio, with dust-to-gas varying with density within each galaxy by up to a factor 22.4. We explore several possible reasons for this, and our favored explanation is dust grain growth in denser regions of ISM. We find that the evolution of the dust-to-gas ratio with ISM surface density is very similar between M31 and M33, despite their large differences in mass, metallicity, and star formation rate; conversely, we find M33 and the LMC to have very different dust-to-gas evolution profiles, despite their close similarity in those properties. Our dust-to-gas ratios address previous disagreement between UV- and FIR-based dust-to-gas estimates for the Magellanic Clouds, removing the disagreement for the LMC, and considerably reducing it for the SMC - with our new dust-to-gas measurements being factors of 2.4 and 2.0 greater than the previous far-infrared estimates, respectively. We also observe that the dust-to-gas ratio appears to fall at the highest densities for the LMC, M31, and M33; this is unlikely to be an actual physical phenomenon, and we posit that it may be due to a combined effect of dark gas, and changing dust mass opacity.Comment: Accepted for publication in the Astrophysical Journa

    Development and characterization of 16 microsatellite markers for the Louisiana pine snake, Pituophis ruthveni, and two congeners of conservation concern

    Get PDF
    We isolated and characterized 16 microsatellite loci from the Louisiana pine snake, Pituophis ruthveni. Loci were screened in 24 individuals from locations throughout its distribution in Louisiana and Texas. The number of alleles per locus ranged from 4 to 12, observed heterozygosity ranged from 0.200 to 0.875, and the probability of identity ranged from 0.043 to 0.298. We examined cross-species amplification at these loci in P. catenifer (bullsnakes and gopher snakes) and P. melanoleucus (pine snakes). These new markers provide tools for examining the conservation genetics of this species complex. Louisiana pine snakes face numerous threats: population densities are extremely low and their natural habitat has been severely altered and fragmented. In southern Canada, P. catenifer is at the northern extreme of its range and limited by the availability of suitable over-wintering sites. Hence, for these two species reduction of heterozygosity, potential for inbreeding, and increased effects of genetic drift are all of considerable conservation concern

    A multi-institutional study evaluating and describing atypical parathyroid tumors discovered after parathyroidectomy

    Get PDF
    Objective: To describe common intraoperative and pathologic findings of atypical parathyroid tumors (APTs) and evaluate clinical outcomes in patients undergoing parathyroidectomy. Methods: In this multi-institutional retrospective case series, data were collected from patients who underwent parathyroidectomy from 2000 to 2018 from three tertiary care institutions. APTs were defined according to the AJCC eighth edition guidelines and retrospective chart review was performed to evaluate the incidence of recurrent laryngeal nerve injury, recurrence of disease, and disease-specific mortality. Results: Twenty-eight patients were identified with a histopathologic diagnosis of atypical tumor. Mean age was 56 years (range, 23-83) and 68% (19/28) were female. All patients had an initial diagnosis of primary hyperparathyroidism with 21% (6/28) exhibiting clinical loss of bone density and 32% (9/28) presenting with nephrolithiasis or renal dysfunction. Intraoperatively, 29% (8/28) required thyroid lobectomy, 29% (8/28) had gross adherence to adjacent structures and 46% (13/28) had RLN adherence. The most common pathologic finding was fibrosis 46% (13/28). Postoperative complications include RLN paresis/paralysis in 14% (4/28) and hungry bone syndrome in 7% (2/28). No patients with a diagnosis of atypical tumor developed recurrent disease, however there was one patient that had persistent disease and hypercalcemia that is being observed. There were 96% (27/28) patients alive at last follow-up, with one death unrelated to disease. Conclusion: Despite the new AJCC categorization of atypical tumors staged as Tis, we observed no recurrence of disease after resection and no disease-specific mortality. However, patients with atypical tumors may be at increased risk for recurrent laryngeal nerve injury and incomplete resection

    The Dynamic Effects of Sea Level Rise on Low-Gradient Coastal Landscapes: A Review

    Get PDF
    Coastal responses to sea level rise (SLR) include inundation of wetlands, increased shoreline erosion, and increased flooding during storm events. Hydrodynamic parameters such as tidal ranges, tidal prisms, tidal asymmetries, increased flooding depths and inundation extents during storm events respond nonadditively to SLR. Coastal morphology continually adapts toward equilibrium as sea levels rise, inducing changes in the landscape. Marshes may struggle to keep pace with SLR and rely on sediment accumulation and the availability of suitable uplands for migration. Whether hydrodynamic, morphologic, or ecologic, the impacts of SLR are interrelated. To plan for changes under future sea levels, coastal managers need information and data regarding the potential effects of SLR to make informed decisions for managing human and natural communities. This review examines previous studies that have accounted for the dynamic, nonlinear responses of hydrodynamics, coastal morphology, and marsh ecology to SLR by implementing more complex approaches rather than the simplistic “bathtub” approach. These studies provide an improved understanding of the dynamic effects of SLR on coastal environments and contribute to an overall paradigm shift in how coastal scientists and engineers approach modeling the effects of SLR, transitioning away from implementing the “bathtub” approach. However, it is recommended that future studies implement a synergetic approach that integrates the dynamic interactions between physical and ecological environments to better predict the impacts of SLR on coastal systems

    Integrated Modeling of Dynamic Marsh Feedbacks and Evolution Under Sea-Level Rise in a Mesotidal Estuary (Plum Island, MA, USA)

    Get PDF
    Around the world, wetland vulnerability to sea-level rise (SLR) depends on different factors including tidal regimes, topography, creeks and estuary geometry, sediment availability, vegetation type, etc. The Plum Island estuary (PIE) is a mesotidal wetland system on the east coast of the United States. This research applied a newly updated Hydro-MEM (integrated hydrodynamic-marsh) model to assess the impacts of intermediate-low (50 cm), intermediate (1 m), and intermediate-high (1.5 m) SLR on marsh evolution by the year 2100. Model advancements include capturing vegetation change, inorganic and below and aboveground organic matter portion of marsh platform accretion, and mudflat creation. Although the results indicate a low vulnerability marsh at the PIE, the vegetation changes from high to low marsh under all SLR scenarios (2%–22%), with the higher bounds belonging to higher rise scenarios. Lower SLR produces more productive marsh (13% gain in high productivity regions), whereas the highest SLR scenario causes increased tidal inundation, which leads to loss in productivity (12% change from high to low productivity regions), generation of mudflats (17% of the domain land), and marsh migration to higher lands. Sensitive nonlinear tidal flow changes, which may be increased or decreased with SLR as a result of mudflat creation, marsh migration, and bottom friction change, emphasize the importance of integrated modeling approaches that include dynamic marsh feedbacks in hydrodynamic modeling and varying hydrodynamic effects on the marsh system

    The Dynamic Effects of Sea Level Rise on Low‐Gradient Coastal Landscapes: A Review

    Get PDF
    Coastal responses to sea level rise (SLR) include inundation of wetlands, increased shore-line erosion, and increased flooding during storm events. Hydrodynamic parameters such as tidal ranges, tidal prisms, tidal asymmetries, increased flooding depths and inundation extents during storm events respond non additively to SLR. Coastal morphology continually adapts toward equilibrium as sea levels rise, inducing changes in the landscape. Marshes may struggle to keep pace with SLR and rely on sediment accumulation and the availability of suitable uplands for migration. Whether hydrodynamic, morphologic, or ecologic, the impacts of SLR are interrelated. To plan for changes under future sea lev-els, coastal managers need information and data regarding the potential effects of SLR to make informed decisions for managing human and natural communities. This review examines previous studies that have accounted for the dynamic, nonlinear responses of hydrodynamics, coastal morphology, and marsh ecol-ogy to SLR by implementing more complex approaches rather than the simplistic “bathtub” approach. These studies provide an improved understanding of the dynamic effects of SLR on coastal environments and contribute to an overall paradigm shift in how coastal scientists and engineers approach modeling the effects of SLR, transitioning away from implementing the “bathtub” approach. However, it is recommended that future studies implement a synergetic approach that integrates the dynamic interactions between physical and ecological environments to better predict the impacts of SLR on coastal systems

    Tidal Hydrodynamics Under Future Sea Level Rise and Coastal Morphology in the Northern Gulf of Mexico

    Get PDF
    This study examines the integrated influence of sea level rise (SLR) and future morphology on tidal hydrodynamics along the Northern Gulf of Mexico (NGOM) coast including seven embayments and three ecologically and economically significant estuaries. A large-domain hydrodynamic model was used to simulate astronomic tides for present and future conditions (circa 2050 and 2100). Future conditions were simulated by imposing four SLR scenarios to alter hydrodynamic boundary conditions and updating shoreline position and dune heights using a probabilistic model that is coupled to SLR. Under the highest SLR scenario, tidal amplitudes within the bays increased as much as 67% (10.0 cm) because of increases in the inlet cross-sectional area. Changes in harmonic constituent phases indicated that tidal propagation was faster in the future scenarios within most of the bays. Maximum tidal velocities increased in all of the bays, especially in Grand Bay where velocities doubled under the highest SLR scenario. In addition, the ratio of the maximum flood to maximum ebb velocity decreased in the future scenarios (i.e., currents became more ebb dominant) by as much as 26% and 39% in Weeks Bay and Apalachicola, respectively. In Grand Bay, the flood-ebb ratio increased (i.e., currents became more flood dominant) by 25% under the lower SLR scenarios, but decreased by 16% under the higher SLR as a result of the offshore barrier islands being overtopped, which altered the tidal prism. Results from this study can inform future storm surge and ecological assessments of SLR, and improve monitoring and management decisions within the NGOM
    corecore