44 research outputs found

    Multimodal Phase-Based X-Ray Microtomography with Nonmicrofocal Laboratory Sources

    Get PDF
    We present an alternative laboratory implementation of x-ray phase-contrast tomography through a beam-tracking approach. A nonmicrofocal rotating anode source is combined with a high-resolution detector and an absorbing mask to obtain attenuation, phase, and ultra-small-angle scattering tomograms of different specimens. A theoretical model is also presented which justifies the implementation of beam tracking with polychromatic sources and provides quantitative values of attenuation and phase, under the assumption of low sample attenuation. The method is tested on a variety of samples featuring both large and small x-ray attenuation, phase, and scattering signals. The complementarity of the contrast channels can enable subtle distinctions between materials and tissue types, which appear indistinguishable to conventional tomography scanners

    Utility of knife-edge position tracking in cycloidal computed tomography

    Get PDF
    Cycloidal computed tomography provides high-resolution images within relatively short scan times by combining beam modulation with dedicated under-sampling. However, implementing the technique relies on accurate knowledge of the sample’s motion, particularly in the case of continuous scans, which is often unavailable due to hardware or software limitations. We have developed an easy-to-implement position tracking technique using a sharp edge, which can provide reliable information about the trajectory of the sample and thus improve the reconstruction process. Furthermore, this approach also enables the development of other innovative sampling schemes, which may otherwise be difficult to implement

    X-ray computed tomography

    Get PDF
    X-ray computed tomography (CT) can reveal the internal details of objects in three dimensions non-destructively. In this Primer, we outline the basic principles of CT and describe the ways in which a CT scan can be acquired using X-ray tubes and synchrotron sources, including the different possible contrast modes that can be exploited. We explain the process of computationally reconstructing three-dimensional (3D) images from 2D radiographs and how to segment the 3D images for subsequent visualization and quantification. Whereas CT is widely used in medical and heavy industrial contexts at relatively low resolutions, here we focus on the application of higher resolution X-ray CT across science and engineering. We consider the application of X-ray CT to study subjects across the materials, metrology and manufacturing, engineering, food, biological, geological and palaeontological sciences. We examine how CT can be used to follow the structural evolution of materials in three dimensions in real time or in a time-lapse manner, for example to follow materials manufacturing or the in-service behaviour and degradation of manufactured components. Finally, we consider the potential for radiation damage and common sources of imaging artefacts, discuss reproducibility issues and consider future advances and opportunities

    X-ray phase-contrast microtomography of soft tissues using a compact laboratory system with two-directional sensitivity

    Get PDF
    X-ray microtomography is a nondestructive, three-dimensional inspection technique applied across a vast range of fields and disciplines, ranging from research to industrial, encompassing engineering, biology, and medical research. Phase-contrast imaging extends the domain of application of x-ray microtomography to classes of samples that exhibit weak attenuation, thus appearing with poor contrast in standard x-ray imaging. Notable examples are low-atomic-number materials, like carbon-fiber composites, soft matter, and biological soft tissues. We report on a compact and cost-effective system for x-ray phase-contrast microtomography. The system features high sensitivity to phase gradients and high resolution, requires a low-power sealed x-ray tube, a single optical element, and fits in a small footprint. It is compatible with standard x-ray detector technologies: in our experiments, we have observed that single-photon counting offered higher angular sensitivity, whereas flat panels provided a larger field of view. The system is benchmarked against known-material phantoms, and its potential for soft-tissue three-dimensional imaging is demonstrated on small-animal organs: a piglet esophagus and a rat heart. We believe that the simplicity of the setup we are proposing, combined with its robustness and sensitivity, will facilitate accessing quantitative x-ray phase-contrast microtomography as a research tool across disciplines, including tissue engineering, materials science, and nondestructive testing in general

    High contrast microstructural visualization of natural acellular matrices by means of phase-based x-ray tomography

    Get PDF
    Acellular scaffolds obtained via decellularization are a key instrument in regenerative medicine both per se and to drive the development of future-generation synthetic scaffolds that could become available off-the-shelf. In this framework, imaging is key to the understanding of the scaffolds\u2019 internal structure as well as their interaction with cells and other organs, including ideally post-implantation. Scaffolds of a wide range of intricate organs (esophagus, lung, liver and small intestine) were imaged with x-ray phase contrast computed tomography (PC-CT). Image quality was sufficiently high to visualize scaffold microarchitecture and to detect major anatomical features, such as the esophageal mucosal-submucosal separation, pulmonary alveoli and intestinal villi. These results are a long-sought step for the field of regenerative medicine; until now, histology and scanning electron microscopy have been the gold standard to study the scaffold structure. However, they are both destructive: hence, they are not suitable for imaging scaffolds prior to transplantation, and have no prospect for post-transplantation use. PC-CT, on the other hand, is non-destructive, 3D and fully quantitative. Importantly, not only do we demonstrate achievement of high image quality at two different synchrotron facilities, but also with commercial x-ray equipment, which makes the method available to any research laboratory

    Advanced x-ray imaging techniques in tissue engineering: a new construct assessment platform for enabling the regeneration of personalised organs

    Get PDF
    Tissue engineering (TE) holds promise for generating lab-grown patient specific organs which can provide: (1) effective treatment for conditions that require volumetric tissue transplantation and (2) new platforms for drug testing. Even though volumetric structural information is essential for confirming successful organ maturation, TE protocol designs are currently informed through destructive and 2D construct assessment tools (e.g. histology). X-ray phase-contrast computed-tomography (PC-CT) can generate non-destructive, high resolution, 3D density maps of organ architecture. In this work, PC-CT is used as new imaging tool for guiding two TE protocols currently at the in-vitro testing stage. The first (1) involves cell-repopulation of an oesophageal scaffold, with the aim of using the regenerated construct for treating long-gap oesophageal atresia, whilst for the second (2) a lung-derived scaffold is populated with islets for regenerating a pancreas, with the “repurposed” lung offering a platform for diabetes drug testing. By combing 3D images and quantitative information, we were able to perform comprehensive construct evaluation. Specifically, we assessed volumetrically: (1) the cell-distribution within the regenerated oesophagi and (2) islet integration with the vascular tree of the lung-derived scaffold. This new information was proven to be essential for establishing corresponding TE protocols and enabled their progression to more advanced scale-up models. We are confident that PC-CT will provide the novel insights necessary to further progress TE protocols, with the next step being in-vivo testing. Crucially, the non-destructive nature of PC-CT will allow in-vivo assessments of TE constructs following their implantation into animal hosts, to investigate their successful integration

    A compact system for intraoperative specimen imaging based on edge illumination x-ray phase contrast

    Get PDF
    A significant number of patients receiving breast-conserving surgery (BCS) for invasive carcinoma and ductal carcinoma in situ (DCIS) may need reoperation following tumor-positive margins from final histopathology tests. All current intraoperative margin assessment modalities have specific limitations. As a first step towards the development of a compact system for intraoperative specimen imaging based on edge illumination x-ray phase contrast, we prove that the system\u27s dimensions can be reduced without affecting imaging performance. We analysed the variation in noise and contrast to noise ratio (CNR) with decreasing system length using the edge illumination x-ray phase contrast imaging setup. Two-(planar) and three-(computed tomography (CT)) dimensional imaging acquisitions of custom phantoms and a breast tissue specimen were made. Dedicated phase retrieval algorithms were used to separate refraction and absorption signals. A \u27single-shot\u27 retrieval method was also used, to retrieve thickness map images, due to its simple acquisition procedure and reduced acquisition times. Experimental results were compared to numerical simulations where appropriate. The relative contribution of dark noise signal in integrating detectors is significant for low photon count statistics acquisitions. Under constant exposure factors and magnification, a more compact system provides an increase in CNR. Superior CNR results were obtained for refraction and thickness map images when compared to absorption images. Results indicate that the \u27single-shot\u27 acquisition method is preferable for a compact CT intraoperative specimen scanner; it allows for shorter acquisition times and its combination of the absorption and refraction signals ultimately leads to a higher contrast. The first CT images of a breast specimen acquired with the compact system provided promising results when compared to those of the longer length system

    The Wooster Voice (Wooster, OH), 1949-12-08

    Get PDF
    Dr. T. Cuyler Young addresses the campus during the annual Wooster Day celebration. Dr. Delbert Lean will give his 40th annual reading of Charles Dickens\u27 Christmas Carol. Plans to build a darkroom for student publications are announced. Additionally, Wooster host the fall conference of the Ohio division of the National Student Association.https://openworks.wooster.edu/voice1941-1950/1204/thumbnail.jp

    A compact system for intraoperative specimen imaging based on edge illumination x-ray phase contrast

    Get PDF
    “This is an author-created, un-copyedited version of an article accepted for publication/published in Physics in Medicine & Biology. IOP Publishing Ltd is not responsible for any errors or omissions in this version of the manuscript or any version derived from it. The Version of Record is available online at https://doi.org/10.1088/1361-6560/ab4912
    corecore