3,668 research outputs found
Preliminary estimates of environmental exposure for fuel and exhaust products, volume i. part i- methods and preliminary estimates for msfc. part 2- recommended experimental design for msfc
Environmental exposure for fuel and exhaust products with preliminary estimate
High Rayleigh number convection with double diffusive fingers
An electrodeposition cell is used to sustain a destabilizing concentration
difference of copper ions in aqueous solution between the top and bottom
boundaries of the cell. The resulting convecting motion is analogous to
Rayleigh-B\'enard convection at high Prandtl numbers. In addition, a
stabilizing temperature gradient is imposed across the cell. Even for thermal
buoyancy two orders of magnitude smaller than chemical buoyancy, the presence
of the weak stabilizing gradient has a profound effect on the convection
pattern. Double diffusive fingers appear in all cases. The size of these
fingers and the flow velocities are independent of the height of the cell, but
they depend on the ion concentration difference between top and bottom
boundaries as well as on the imposed temperature gradient. The scaling of the
mass transport is compatible with previous results on double diffusive
convection
Curate and storyspace: an ontology and web-based environment for describing curatorial narratives
Existing metadata schemes and content management systems used by museums focus on describing the heritage objects that the museum holds in its collection. These are used to manage and describe individual heritage objects according to properties such as artist, date and preservation requirements. Curatorial narratives, such as physical or online exhibitions tell a story that spans across heritage objects and have a meaning that does not necessarily reside in the individual heritage objects themselves. Here we present curate, an ontology for describing curatorial narratives. This draws on structuralist accounts that distinguish the narrative from the story and plot, and also a detailed analysis of two museum exhibitions and the curatorial processes that contributed to them. Storyspace, our web based interface and API to the ontology, is being used by curatorial staff in two museums to model curatorial narratives and the processes through which they are constructed
Multiresolution community detection for megascale networks by information-based replica correlations
We use a Potts model community detection algorithm to accurately and
quantitatively evaluate the hierarchical or multiresolution structure of a
graph. Our multiresolution algorithm calculates correlations among multiple
copies ("replicas") of the same graph over a range of resolutions. Significant
multiresolution structures are identified by strongly correlated replicas. The
average normalized mutual information, the variation of information, and other
measures in principle give a quantitative estimate of the "best" resolutions
and indicate the relative strength of the structures in the graph. Because the
method is based on information comparisons, it can in principle be used with
any community detection model that can examine multiple resolutions. Our
approach may be extended to other optimization problems. As a local measure,
our Potts model avoids the "resolution limit" that affects other popular
models. With this model, our community detection algorithm has an accuracy that
ranks among the best of currently available methods. Using it, we can examine
graphs over 40 million nodes and more than one billion edges. We further report
that the multiresolution variant of our algorithm can solve systems of at least
200000 nodes and 10 million edges on a single processor with exceptionally high
accuracy. For typical cases, we find a super-linear scaling, O(L^{1.3}) for
community detection and O(L^{1.3} log N) for the multiresolution algorithm
where L is the number of edges and N is the number of nodes in the system.Comment: 19 pages, 14 figures, published version with minor change
Exploration of bivalent ligands targeting putative mu opioid receptor and chemokine receptor CCR5 dimerization
Modern antiretroviral therapies have provided HIV-1 infected patients longer lifespans and better quality of life. However, several neurological complications are now being seen in these patients due to HIV-1 associated injury of neurons by infected microglia and astrocytes. In addition, these effects can be further exacerbated with opiate use and abuse. One possible mechanism for such potentiation effects of opiates is the interaction of the mu opioid receptor (MOR) with the chemokine receptor CCR5 (CCR5), a known HIV-1 co-receptor, to form MOR-CCR5 heterodimer. In an attempt to understand this putative interaction and its relevance to neuroAIDS, we designed and synthesized a series of bivalent ligands targeting the putative CCR5-MOR heterodimer. To understand how these bivalent ligands may interact with the heterodimer, biological studies including calcium mobilization inhibition, binding affinity, HIV-1 invasion, and cell fusion assays were applied. In particular, HIV-1 infection assays using human peripheral blood mononuclear cells, macrophages, and astrocytes revealed a notable synergy in activity for one particular bivalent ligand. Further, a molecular model of the putative CCR5-MOR heterodimer was constructed, docked with the bivalent ligand, and molecular dynamics simulations of the complex was performed in a membrane-water system to help understand the biological observation
Caracterização mecânica e térmica de nanocompósitos de poli (metacrilato de metila) (PMMA) e sílica obtida de fontes vegetais.
Morphine Enhances HIV-1SF162-Mediated Neuron Death and Delays Recovery of Injured Neurites
HIV-1 enters the CNS soon after initial systemic infection; within the CNS parenchyma infected and/or activated perivascular macrophages, microglia and astrocytes release viral and cellular toxins that drive secondary toxicity in neurons and other cell types. Our previous work has largely modeled HIV-neuropathology using the individual viral proteins Tat or gp120, with murine striatal neurons as targets. To model disease processes more closely, the current study uses supernatant from HIV-1-infected cells. Supernatant from HIV-1SF162-infected differentiated-U937 cells (HIV+sup) was collected and p24 level was measured by ELISA to assess the infection. Injection drug abuse is a significant risk factor for HIV-infection, and opiate drug abusers show increased HIV-neuropathology, even with anti-retroviral treatments. We therefore assessed HIV+sup effects on neuronal survival and neurite growth/pruning with or without concurrent exposure to morphine, an opiate that preferentially acts through µ-opioid receptors. Effects of HIV+sup ± morphine were assessed on neuronal populations, and also by time-lapse imaging of individual cells. HIV+sup caused dose-dependent toxicity over a range of p24 levels (10–500 pg/ml). Significant interactions occurred with morphine at lower p24 levels (10 and 25 pg/ml), and GSK3β was implicated as a point of convergence. In the presence of glia, selective neurotoxic measures were significantly enhanced and interactions with morphine were also augmented, perhaps related to a decreased level of BDNF. Importantly, the arrest of neurite growth that occurred with exposure to HIV+sup was reversible unless neurons were continuously exposed to morphine. Thus, while reducing HIV-infection levels may be protective, ongoing exposure to opiates may limit recovery. Opiate interactions observed in this HIV-infective environment were similar, though not entirely concordant, with Tat/gp120 interactions reported previously, suggesting unique interactions with virions or other viral or cellular proteins released by infected and/or activated cells
Robust Structured Low-Rank Approximation on the Grassmannian
Over the past years Robust PCA has been established as a standard tool for
reliable low-rank approximation of matrices in the presence of outliers.
Recently, the Robust PCA approach via nuclear norm minimization has been
extended to matrices with linear structures which appear in applications such
as system identification and data series analysis. At the same time it has been
shown how to control the rank of a structured approximation via matrix
factorization approaches. The drawbacks of these methods either lie in the lack
of robustness against outliers or in their static nature of repeated
batch-processing. We present a Robust Structured Low-Rank Approximation method
on the Grassmannian that on the one hand allows for fast re-initialization in
an online setting due to subspace identification with manifolds, and that is
robust against outliers due to a smooth approximation of the -norm cost
function on the other hand. The method is evaluated in online time series
forecasting tasks on simulated and real-world data
Microscopic description of Coulomb and nuclear excitation of multiphonon states in Ca + Ca collisions
We calculate the inelastic scattering cross sections to populate one- and
two-phonon states in heavy ion collisions with both Coulomb and nuclear
excitations. Starting from a microscopic approach based on RPA, we go beyond it
in order to treat anharmonicities and non-linear terms in the exciting field.
These anharmonicities and non-linearities are shown to have important effects
on the cross sections both in the low energy part of the spectrum and in the
energy region of the Double Giant Quadrupole Resonance. By properly introducing
an optical potential the inelastic cross section is calculated semiclassically
by integrating the excitation probability over all impact parameters. A
satisfactory agreement with the experimental results is obtained.Comment: 20 pages, 2 figures, revtex, to be published in Phys. Rev.
- …
