195 research outputs found

    The Effect of Increasing Mass upon Locomotion

    Get PDF
    The purpose of this investigation was to determine if increasing body mass while maintaining bodyweight would affect ground reaction forces and joint kinetics during walking and running. It was hypothesized that performing gait with increased mass while maintaining body weight would result in greater ground reaction forces, and would affect the net joint torques and work at the ankle, knee and hip when compared to gait with normal mass and bodyweight. Vertical ground reaction force was measured for ten subjects (5M/5F) during walking (1.34 m/s) and running (3.13 m/s) on a treadmill. Subjects completed one minute of locomotion at normal mass and bodyweight and at four added mass (AM) conditions (10%, 20%, 30% and 40% of body mass) in random order. Three-dimensional joint position data were collected via videography. Walking and running were analyzed separately. The addition of mass resulted in several effects. Peak impact forces and loading rates increased during walking, but decreased during running. Peak propulsive forces decreased during walking and did not change during running. Stride time increased and hip extensor angular impulse and positive work increased as mass was added for both styles of locomotion. Work increased at a greater rate during running than walking. The adaptations to additional mass that occur during walking are different than during running. Increasing mass during exercise in microgravity may be beneficial to increasing ground reaction forces during walking and strengthening hip musculature during both walking and running. Future study in true microgravity is required to determine if the adaptations found would be similar in a weightless environment

    Josephson point-contact resonance responses

    Get PDF
    The voltage across a dc-current-driven Josephson point contact shunted by a resistive element with an applied small-amplitude ac signal current at frequency omega is calculated. First-order resonances are found to occur whenever +omega or –omega is near the Josephson frequency omega0. Second-order resonances occur whenever omega is near ±omega0/2. Singular perturbation techniques are used to obtain accurate approximate solutions for the contact voltage, in particular solutions when one of the above resonances occurs. These solutions all exhibit frequency (phase) locking when omega is near enough to ±omega0 and ±omega0/2, and frequency pulling otherwise. The regions where frequency locking occurs are obtained

    Production physiology of three native ornamental shrubs intercropped in a young longleaf pine plantation

    Get PDF
    Paper presented at the 11th North American Agroforesty Conference, which was held May 31-June 3, 2009 in Columbia, Missouri.In Gold, M.A. and M.M. Hall, eds. Agroforestry Comes of Age: Putting Science into Practice. Proceedings, 11th North American Agroforestry Conference, Columbia, Mo., May 31-June 3, 2009.The production of woody floral products -- the fresh or dried stems that are used for decorative purposes -- may be an attractive option for southeastern landowners looking to generate income from small landholdings. Since many shrubs native to the understory of the longleaf pine ecosystem have market potential, one possibility is the intercropping of select species in the between-row spacing of young longleaf pine plantations. The objective of this study was to evaluate how competition affects the physiology, and thus the productivity of American beautyberry (Callicarpa americana L.), wax myrtle (Morella cerifera (L.) Small) and inkberry (Ilex glabra (L.) A.Gray) when intercropped in a longleaf pine (Pinus palustris Mill.) plantation in the southeastern United States. The effect of competition was assessed via comparisons of mortality, biomass, light transmittance, gas exchange and soil moisture between intercropping and monoculture (treeless) treatments. Overall, shrubs in the intercropping treatment performed worse than those in the monoculture, with higher mortality, and reductions in biomass of 75.5 [percent], 50.6 [percent], and 68.7 [percent] for C. americana, M. cerifera and I. glabra, respectively. Root-shoot ratios for all species were significantly higher and soil moisture during dry periods was significantly lower in the intercropping treatment. Light transmittance below the pine canopy was high (57.7 [percent]) and I. glabra was the only species that exhibited reduced photosynthesis due to shading. These results suggest that the effect of shading is minimal and belowground competition is likely the most important determinant of productivity in this system.Donald L. Hagan (1), Shibu Jose (1), Mack Thetford (2), and Kimberly Bohn (3) ; 1. School of Forest Resources & Conservation, University of Florida, Gainesville, FL USA 32611. 2. Department of Environmental Horticulture, University of Florida, Milton, FL, USA 32583. 3. School of Forest Resources & Conservation, University of Florida, Milton, FL, USA 32583.Includes bibliographical references

    Competition for applied 15N fertilizer in a longelaf pine/native woody ornamental intercropping system

    Get PDF
    Paper presented at the 11th North American Agroforesty Conference, which was held May 31-June 3, 2009 in Columbia, Missouri.In Gold, M.A. and M.M. Hall, eds. Agroforestry Comes of Age: Putting Science into Practice. Proceedings, 11th North American Agroforestry Conference, Columbia, Mo., May 31-June 3, 2009.The cultivation of ornamentals to produce woody floral products -- the fresh or dried stems that are used for decorative purposes -- may be an attractive option for southeastern landowners looking to generate income from small landholdings. Since many shrubs native to the understory of the longleaf pine (Pinus palustris Mill.) ecosystem have market potential, one possibility is the intercropping of select species in the between-row spacing of young longleaf pine plantations. The objective of this study was to evaluate how interspecific competition affects the fate of 15N fertilizer when American beautyberry (Callicarpa americana L.), wax myrtle (Morella cerifera (L.) Small) and inkberry (Ilex glabra (L.) A.Gray) are intercropped with longleaf pine. Nitrogen derived from fertilizer (NDF), utilization of fertilizer N (UFN) and recovery of fertilizer N (RFNsoil) were compared between agroforestry and monoculture (treeless) treatments to assess the effect of competition. Results varied by species, with NDF being higher for C. americana foliage and lower for all M. cerifera tissues in the agroforestry treatment. No effect was observed for I. glabra. UFN was lower for all species in the agroforestry treatment. RFNsoil was higher in the agroforestry treatment for I. glabra, but no treatment effects were observed for C. americana or M. cerifera. Overall, while it is clear that interspecific competition was present in the agroforestry treatment, the inefficiency of fertilizer use suggests that nitrogen was not the most limiting resource. Management interventions, particularly those that address competition for water, will likely be critical to the success of this system.Donald L. Hagan (1), Shibu Jose (1), Mack Thetford (2), and Kimberly Bohn (3) ; 1. School of Forest Resources and Conservation, University of Florida, Gainesville, FL USA 32611. 2. Department of Environmental Horticulture, University of Florida, Milton, FL, USA 32583. 3. School of Forest Resources & Conservation, University of Florida, Milton, FL, USA 32583.Includes bibliographical references

    Validation of the Pulmonary Function System for Use on the International Space Station

    Get PDF
    Aerobic deconditioning occurs during long duration space flight despite the use of exercise countermeasures (Convertino, 1996). As a part of International Space Station (ISS) medical operations, periodic tests designed to estimate aerobic capacity are performed to track changes in aerobic fitness and to determine the effectiveness of exercise countermeasures. These tests are performed prior to, during, and after missions of greater than 30 days in duration. Crewmembers selected for missions aboard the ISS perform a graded exercise test on a cycle ergometer approximately 270 days prior to their scheduled launch date in order to measure peak oxygen consumption (VO2PK) and peak heart rate (HRpk). Approximately 30 to 45 days prior to launch, crewmembers perform a submaximal cycle ergometer test at work rates set to elicit 25, 50 and 75% of their pre-flight VO2PK. This test, known as the Periodic Fitness Evaluation (PFE), serves as a baseline measure to which subsequent in-and post-flight exercise tests are compared. While onboard the ISS, crewmembers are normally scheduled to perform the PFE beginning with flight day (FD) 14 and every 30 days thereafter. The PFE is also conducted 5 and 30 days following flight. Using PFE data, aerobic fitness is estimated by quantifying the VO2 vs. HR relationship using linear regression and calculating the VO2 that would occur at the crewmember s previously measured HRpk. Currently, for data collected during flight, this technique assumes that the pre- vs. in-flight oxygen consumption per given cycle workload is similar. However, the validity of this assumption is based upon a sparse amount of data collected during the Skylab era (Michel, et al. 1977). The method of using heart rate and cycle ergometer work rates has been used to estimate aerobic fitness in normal gravity (Astrand and Ryhming, 1954; Lee, 1993). Due to spaceflight induced physiological alterations, such as shifts in extracellular fluid (e.g. plasma) volume, this method may not be valid during space flight. In addition, the ergometer onboard ISS is vibration-isolated and moves with the astronaut s application of force into the pedals. The effect of this movement on the VO2 of cycle exercise on ISS has not been quantified

    Effects of Different Lifting Cadences on Ground Reaction Forces during the Squat Exercise

    Get PDF
    The purpose of this investigation was to determine the effect of different cadences on the ground reaction force (GRF(sub R)) during the squat exercise. It is known that squats performed with greater acceleration will produce greater inertial forces; however, it is not well understood how different squat cadences affect GRF(sub R). It was hypothesized that faster squat cadences will result in greater peak GRF(sub R). METHODS: Six male subjects (30.8+/-4.4 y, 179.5+/-8.9 cm, 88.8+/-13.3 kg) with previous squat experience performed three sets of three squats using three different cadences (FC = 1 sec descent/1 sec ascent; MC = 3 sec descent/1 sec ascent; SC = 4 sec descent/2 sec ascent) with barbell mass equal to body mass. Ground reaction force was used to calculate inertial force trajectories of the body plus barbell (FI(sub system)). Forces were normalized to body mass. RESULTS: Peak GRF(sub R) and peak FI(sub system) were significantly higher in FC squats compared to MC (p=0.0002) and SC (p=0.0002). Range of GRF(sub R) and FI(sub system) were also significantly higher in FC compared to MC (p<0.05), and MC were significantly higher than SC (p<0.05). DISCUSSION: Faster squat cadences result in significantly greater peak GRF(sub R) due to the inertia of the system. GRF(sub R) was more dependent upon decent cadence than on ascent cadence. PRACTICAL APPLICATION: This study demonstrates that faster squat cadences produce greater ground reaction forces. Therefore, the use of faster squat cadences might enhance strength and power adaptations to long-term resistance exercise training. Key Words: velocity, weight training, resistive exercis

    The Effect of Manipulating Subject Mass on Lower Extremity Torque Patterns During Locomotion

    Get PDF
    During locomotion, humans adapt their motor patterns to maintain coordination despite changing conditions (Reisman et al., 2005). Bernstein (1967) proposed that in addition to the present state of a given joint, other factors, including limb inertia and velocity, must be taken into account to allow proper motion to occur. During locomotion with added mass counterbalanced using vertical suspension to maintain body weight, vertical ground reaction forces (GRF's) increase during walking but decrease during running, suggesting that adaptation may be velocity-specific (De Witt et al., 2006). It is not known, however, how lower extremity joint torques adapt to changes in inertial forces. The purpose of this investigation was to examine the effects of increasing body mass while maintaining body weight upon lower-limb joint torque during walking and running. We hypothesized that adaptations in joint torque patterns would occur with the addition of body mass

    The Effect of Increasing Inertia upon Vertical Ground Reaction Forces during Locomotion

    Get PDF
    The addition of inertia to exercising astronauts could increase ground reaction forces and potentially provide a greater health benefit. However, conflicting results have been reported regarding the adaptations to additional mass (inertia) without additional net weight (gravitational force) during locomotion. We examined the effect of increasing inertia while maintaining net gravitational force on vertical ground reaction forces and kinematics during walking and running. Vertical ground reaction force was measured for ten healthy adults (5 male/5 female) during walking (1.34 m/s) and running (3.13 m/s) using a force-measuring treadmill. Subjects completed locomotion at normal weight and mass, and at 10, 20, 30, and 40% of added inertial force. The added gravitational force was relieved with overhead suspension, so that the net force between the subject and treadmill at rest remained equal to 100% body weight. Peak vertical impact forces and loading rates increased with increased inertia during walking, and decreased during running. As inertia increased, peak vertical propulsive forces decreased during walking and did not change during running. Stride time increased during walking and running, and contact time increased during running. Vertical ground reaction force production and adaptations in gait kinematics were different between walking and running. The increased inertial forces were utilized independently from gravitational forces by the motor control system when determining coordination strategies

    External Load Affects Ground Reaction Force Parameters Non-uniformly during Running in Weightlessness

    Get PDF
    Long-term exposure to microgravity induces detrimefits to the musculcskdetal system (Schneider et al., 1995; LeBlanc et al., 2000). Treadmill exercise is used onboard the International Space Station as an exercise countermeasure to musculoskeletal deconditioning due to spaceflight. During locomotive exercise in weightlessness (0G), crewmembers wear a harness attached to an external loading mechanism (EL). The EL pulls the crewmember toward the treadmill, and provides resistive load during the impact and propulsive phases of gait. The resulting forces may be important in stimulating bone maintenance (Turner, 1998). The EL can be applied via a bungee and carabineer clip configuration attached to the harness and can be manipulated to create varying amounts of load levels during exercise. Ground-based research performed using a vertically mounted treadmill found that peak ground reaction forces (GRF) during running at an EL of less than one body weight (BW) are less than those that occur during running in normal gravity (1G) (Davis et al., 1996). However, it is not known how the GRF are affected by the EL in a true OG environment. Locomotion while suspended may result in biomechanics that differ from free running. The purpose of this investigation was to determine how EL affects peak impact force, peak propulsive force, loading rate, and impulse of the GRF during running in 0G. It was hypothesized that increasing EL would result in increases in each GRF parameter
    • …
    corecore