2,971 research outputs found
Generalized van der Waals theory of liquid-liquid phase transitions
In the framework of the thermodynamic perturbation theory for fluids we study
how the phase diagram of an isotropic repulsive soft-core attractive potential,
where a liquid-liquid phase transition exists in addition to the standard
gas-liquid phase transition, changes by varying the parameters of the
potential. We show that existence of the liquid-liquid transition is determined
by the interplay of the parameters of the potential and the structure of a
reference liquid.Comment: 5 pages, 6 figure
High-efficiency quantum interrogation measurements via the quantum Zeno effect
The phenomenon of quantum interrogation allows one to optically detect the
presence of an absorbing object, without the measuring light interacting with
it. In an application of the quantum Zeno effect, the object inhibits the
otherwise coherent evolution of the light, such that the probability that an
interrogating photon is absorbed can in principle be arbitrarily small. We have
implemented this technique, demonstrating efficiencies exceeding the 50%
theoretical-maximum of the original ``interaction-free'' measurement proposal.
We have also predicted and experimentally verified a previously unsuspected
dependence on loss; efficiencies of up to 73% were observed and the feasibility
of efficiencies up to 85% was demonstrated.Comment: 4 pages, 3 postscript figures. To appear in Phys. Rev. Lett;
submitted June 11, 199
Interaction-free measurement and forward scattering
Interaction-free measurement is shown to arise from the forward-scattered
wave accompanying absorption: a "quantum silhouette" of the absorber.
Accordingly, the process is not free of interaction. For a perfect absorber the
forward-scattered wave is locked both in amplitude and in phase. For an
imperfect one it has a nontrivial phase of dynamical origin (``colored
silhouette"), measurable by interferometry. Other examples of quantum
silhouettes, all controlled by unitarity, are briefly discussed.Comment: 4 pages in RevTex + 1 figure in eps; submitted to Phys. Rev. A since
09Jan98; now update
First principles modelling of magnesium titanium hydrides
Mixing Mg with Ti leads to a hydride Mg(x)Ti(1-x)H2 with markedly improved
(de)hydrogenation properties for x < 0.8, as compared to MgH2. Optically, thin
films of Mg(x)Ti(1-x)H2 have a black appearance, which is remarkable for a
hydride material. In this paper we study the structure and stability of
Mg(x)Ti(1-x)H2, x= 0-1 by first-principles calculations at the level of density
functional theory. We give evidence for a fluorite to rutile phase transition
at a critical composition x(c)= 0.8-0.9, which correlates with the
experimentally observed sharp decrease in (de)hydrogenation rates at this
composition. The densities of states of Mg(x)Ti(1-x)H2 have a peak at the Fermi
level, composed of Ti d states. Disorder in the positions of the Ti atoms
easily destroys the metallic plasma, however, which suppresses the optical
reflection. Interband transitions result in a featureless optical absorption
over a large energy range, causing the black appearance of Mg(x)Ti(1-x)H2.Comment: 22 pages, 9 figures, 4 table
Total energy calculation of high pressure selenium: The origin of incommensurate modulations in Se-IV and the instability of proposed Se-II
We present calculation of the high pressure crystal structures in selenium,
including rational approximants to the recently reported incommensurate phases.
We show how the incommensurate phases can be intuitively explained in terms of
imaginary phonon frequencies arising from Kohn anomalies in the putative
undistorted phase. We also find inconsistencies between the calculated and
experimental Se-II phase - the calculations show it to be a metastable metal
while the experiment finds a stable semiconductor. We propose that the
experimentally reported structure is probably in error.Comment: 4 pages 4 figure
New Magnetic Excitations in the Spin-Density-Wave of Chromium
Low-energy magnetic excitations of chromium have been reinvestigated with a
single-Q crystal using neutron scattering technique. In the transverse
spin-density-wave phase a new type of well-defined magnetic excitation is found
around (0,0,1) with a weak dispersion perpendicular to the wavevector of the
incommensurate structure. The magnetic excitation has an energy gap of E ~ 4
meV and at (0,0,1) exactly corresponds to the Fincher mode previously studied
only along the incommensurate wavevector.Comment: 4 pages, 4 figure
Oscillator strengths with pseudopotentials
The time-dependent local-density approximation (TDLDA) is shown to remain
accurate in describing the atomic response of IB elements under the additional
approximation of using pseudopotentials to treat the effects of core electrons.
This extends the work of Zangwill and Soven who showed the utility of the
all-electron TDLDA in the atomic response problem.Comment: 13 pages including 3 Postscript figure
Fe-substituted mullite powders for the in situ synthesis of carbon nanotubes by catalytic chemical vapor deposition
Powders of iron-substituted mullite were prepared by combustion and further calcination in air at different temperatures. A detailed study involving notably Mo¨ssbauer spectroscopy showed that the Fe3+ ions are distributed between the mullite phase and a corundum phase that progressively dissolves into mullite upon the increase in calcination temperature. Carbon nanotube-Fe-mullite nanocomposites were prepared for the first time by a direct method involving a reduction of these powders in H2-CH4 and without any mechanical mixing step. The carbon nanotubes formed by the catalytic decomposition of CH4 on the smallest metal particles are mostly double-walled and multiwalled, although some carbon nanofibers are also observed
- …