8 research outputs found
Simulation of Guided-Wave Ultrasound Propagation in Composite Laminates: Benchmark Comparisons of Numerical Codes and Experiment
Ultrasonic wave methods constitute the leading physical mechanism for nondestructive evaluation (NDE) and structural health monitoring (SHM) of solid composite materials, such as carbon fiber reinforced polymer (CFRP) laminates. Computational models of ultrasonic wave excitation, propagation, and scattering in CFRP composites can be extremely valuable in designing practicable NDE and SHM hardware, software, and methodologies that accomplish the desired accuracy, reliability, efficiency, and coverage. The development and application of ultrasonic simulation approaches for composite materials is an active area of research in the field of NDE. This paper presents comparisons of guided wave simulations for CFRP composites implemented using four different simulation codes: the commercial finite element modeling (FEM) packages ABAQUS, ANSYS, and COMSOL, and a custom code executing the Elastodynamic Finite Integration Technique (EFIT). Benchmark comparisons are made between the simulation tools and both experimental laser Doppler vibrometry data and theoretical dispersion curves. A pristine and a delamination type case (Teflon insert in the experimental specimen) is studied. A summary is given of the accuracy of simulation results and the respective computational performance of the four different simulation tools
Risk Assessment and scaling for the SLS LOx ET
In this report we analyze the transpiration cooling by He bubble injection of the long LOx tank feedline heated by the environment heat. We consider possible hazards that can arise in the proposed design of the SLS core stage where the feedline length is much longer than that used in the Space Shuttle
Risk Assessment and Scaling for the SLS LH2 ET
In this report the main physics processes in LH2 tank during prepress and rocket flight are studied. The goal of this investigation is to analyze possible hazards and to make risk assessment in proposed LH2 tank designs for SLS with 5 engines (the situation with 4 engines is less critical). For analysis we use the multinode model (MNM) developed by us and presented in a separate report and also 3D ANSYS simulations. We carry out simulation and theoretical analysis the physics processes such as (i) accumulation of bubbles in LH2 during replenish stage and their collapsing in the liquid during the prepress; (ii) condensation-evaporation at the liquid-vapor interface and tank wall, (iv) heating the liquid near the interface and wall due to condensation and environment heat, (v) injection of hot He during prepress and of hot GH2 during flight, (vi) mixing and cooling of the injected gases due to heat transfer between the gases, liquid and the tank wall. We analyze the effects of these physical processes on the thermo- and fluid gas dynamics in the ullage and on the stratification of temperature in the liquid and assess the associated hazards. A special emphasize is put on the scaling predictions for the larger SLS LH2 tank
Hazards Induced by Breach of Liquid Rocket Fuel Tanks: Conditions and Risks of Cryogenic Liquid Hydrogen-Oxygen Mixture Explosions
We analyze the data of purposeful rupture experiments with LOx and LH2 tanks, the Hydrogen-Oxygen Vertical Impact (HOVI) tests that were performed to clarify the ignition mechanisms, the explosive power of cryogenic H2/Ox mixtures under different conditions, and to elucidate the puzzling source of the initial formation of flames near the intertank section during the Challenger disaster. We carry out a physics-based analysis of general explosions scenarios for cryogenic gaseous H2/Ox mixtures and determine their realizability conditions, using the well-established simplified models from the detonation and deflagration theory. We study the features of aerosol H2/Ox mixture combustion and show, in particular, that aerosols intensify the deflagration flames and can induce detonation for any ignition mechanism. We propose a cavitation-induced mechanism of self-ignition of cryogenic H2/Ox mixtures that may be realized when gaseous H2 and Ox flows are mixed with a liquid Ox turbulent stream, as occurred in all HOVI tests. We present an overview of the HOVI tests to make conclusion on the risk of strong explosions in possible liquid rocket incidents and provide a semi-quantitative interpretation of the HOVI data based on aerosol combustion. We uncover the most dangerous situations and discuss the foreseeable risks which can arise in space missions and lead to tragic outcomes. Our analysis relates to only unconfined mixtures that are likely to arise as a result of liquid propellant space vehicle incidents
Recommended from our members
RESIDUAL STRESS AND DEFORMATION ANALYSIS OF INCONEL 718 ACROSS VARYING OVERHANGS IN LASER POWDER BLOWN DIRECTED ENERGY DEPOSITION
Any metal that is subjected to rapid heat and cooling will undergo the development of
residual stresses. As they experience intense temperature fluctuations, this will consequently alter
the way the material will behave. This issue proves to be of great concern within additive
manufacturing. That said, the presence of temperature fluctuations is more prominent in Directed
energy deposition (DED), whereas other methods of manufacturing are more prominent in the
pre- or post- printing process. This in turn means the deformation, as well as the redistribution of
the residual stresses within pieces, are subject to variance by several process parameters set
during a print. By using the Inconel 718 alloy feedstock in RPMI’s Laser Powder Directed
Energy Deposition (LP-DED) printer, a series of coupons with four different overhang angles
and laser power outputs will determine how these changes thermo-mechanically affect the prints
through the use of FEA simulations and scans.Mechanical Engineerin
Explosion Hazard from a Propellant-Tank Breach in Liquid Hydrogen-Oxygen Rockets
An engineering risk assessment of the conditions for massive explosions of cryogenic liquid hydrogen-oxygen rockets during launch accidents is presented. The assessment is based on the analysis of the data of purposeful rupture experiments with liquid oxygen and hydrogen tanks and on an interpretation of these data via analytical semiquantitative estimates and numerical simulations of simplified models for the whole range of the physical phenomena governing the outcome of a propellant-tank breach. The following sequence of events is reconstructed: rupture of fuel tanks, escape of the fluids from the ruptured tanks, liquid film boiling, fragmentation of liquid flow, formation of aerosol oxygen and hydrogen clouds, mixing of the clouds, droplet evaporation, self-ignition of the aerosol clouds, and aerosol combustion. The power of the explosion is determined by a small fraction of the escaped cryogens that become well mixed within the aerosol cloud during the delay time between rupture and ignition. Several scenarios of cavitation-induced self-ignition of the cryogenic hydrogen/oxygen mixture are discussed. The explosion parameters in a particular accident are expected to be highly varied and unpredictable due to randomness of the processes of formation, mixing, and ignition of oxygen and hydrogen clouds. Under certain conditions rocket accidents may result in very strong explosions with blast pressures from a few atm up to 100 atm. The most dangerous situations and the foreseeable risks for space missions are uncovered
Mitigation of Solid Booster Ignition over Pressure by Water Aerosol Sprays
Interaction of acoustic waves with water aerosol layers is analyzed in the context of the problem of solid booster ignition overpressure suppression. In contrast to the conventional approach to ignition overpressure suppression, which aims at using water to quench the sources of the ignition overpressure waves, this study focuses on blocking the ignition overpressure wave propagation, using reflection and attenuation of the wave by the water aerosol layers. The study considers interaction of the waves with aerosol layers of large mass loading for varying sizes of the droplets. The size of the droplets is shown to substantially affect the mechanisms of interaction with the waves. The criteria for the crossover between different mechanisms are established as functions of the droplet size and the ignition overpressure wave parameters. The optimal parameters and designs for water aerosol sprays are proposed that maximize the ignition overpressure suppression. These results were obtained using the nozzle and the exhaust hole geometries similar to those of the space shuttle. Remarkably, it is found that various a priori reasonable designs of the aerosol and water sprays may increase the ignition overpressure impact on the vehicle, increasing the risk of vehicle damage