362 research outputs found

    Skywalking GEMS and UDF

    Full text link
    The two large colour mosaics of the GEMS and UDF projects, both obtained with the Hubble Space Telescope and ACS, consist of large amounts of data. We present two web application pages (the GEMS and UDF "Skywalker") that allow to pan around in these mosaics with downloading only small parts at a time.Comment: 1 pag

    Conductance oscillations in mesoscopic rings: microscopic versus macroscopic picture

    Full text link
    The phase of Aharonov-Bohm oscillations in mesoscopic metal rings in the presence of a magnetic field can be modulated by application of a DC-bias current I_DC. We address the question of how a variation of I_DC and hence of the microscopic phases of the electronic wave functions results in the macroscopic phase of the conductance oscillations. Whereas the first one can be varied continuously the latter has to be quantized for a ring in two-wire configuration by virtue of the Onsager symmetry relations. We observe a correlation between a phase flip by +/- pi and the amplitude of the oscillations.Comment: 4 pages, 4 figure

    Gravitational lens candidates in the E-CDFS

    Full text link
    We report ten lens candidates in the E-CDFS from the GEMS survey. Nine of the systems are new detections and only one of the candidates is a known lens system. For the most promising five systems including the known lens system, we present results from preliminary lens mass modelling, which tests if the candidates are plausible lens systems. Photometric redshifts of the candidate lens galaxies are obtained from the COMBO-17 galaxy catalog. Stellar masses of the candidate lens galaxies within the Einstein radius are obtained by using the zz-band luminosity and the VzV-z color-based stellar mass-to-light ratios. As expected, the lensing masses are found to be larger than the stellar masses of the candidate lens galaxies. These candidates have similar dark matter fractions as compared to lenses in SLACS and COSMOS. They also roughly follow the halo mass-stellar mass relation predicted by the subhalo abundance matching technique. One of the candidate lens galaxies qualifies as a LIRG and may not be a true lens because the arc-like feature in the system is likely to be an active region of star formation in the candidate lens galaxy. Amongst the five best candidates, one is a confirmed lens system, one is a likely lens system, two are less likely to be lenses and the status of one of the candidates is ambiguous. Spectroscopic follow-up of these systems is still required to confirm lensing and/or for more accurate determination of the lens masses and mass density profiles.Comment: 12 pages, 5 figures, 3 tables, ApJ accepte

    PMH2 EVIDENCE FOR SSRI IN THE TREATMENT OF DEPRESSION: EARLY KNOWLEDGE GAIN—LATE CONSEQUENCES IN ROUTINE CARE?

    Get PDF

    Intensity of parasitic mite infection decreases with hibernation duration of the host snail

    Get PDF
    Temperature can be a limiting factor on parasite development. Riccardoella limacum, a haematophagous mite, lives in the mantle cavity of helicid land snails. The prevalence of infection by R. limacum in populations of the land snail Arianta arbustorum is highly variable (0-78%) in Switzerland. However, parasitic mites do not occur in host populations at altitudes of 1290 m or higher. It has been hypothesized that the host's hibernation period might be too long at high elevations for mites and their eggs to survive. To test this hypothesis, we experimentally infected snails and allowed them to hibernate at 4°C for periods of 4-7 months. Winter survival of host snails was negatively affected by R. limacum. The intensity of mite infection decreased with increasing hibernation duration. Another experiment with shorter recording intervals revealed that mites do not leave the host when it buries in the soil at the beginning of hibernation. The number of mites decreased after 24 days of hibernation, whereas the number of eggs attached to the lung tissue remained constant throughout hibernation. Thus, R. limacum survives the winter in the egg stage in the host. Low temperature at high altitudes may limit the occurrence of R. limacu

    PRS2 PRESCRIPTION PATTERNS IN COPD PATIENTS IN A GERMAN SICKNESS FUND POPULATION

    Get PDF

    MitoSegNet: Easy-to-use Deep Learning Segmentation for Analyzing Mitochondrial Morphology

    Get PDF
    While the analysis of mitochondrial morphology has emerged as a key tool in the study of mitochondrial function, efficient quantification of mitochondrial microscopy images presents a challenging task and bottleneck for statistically robust conclusions. Here, we present Mitochondrial Segmentation Network (MitoSegNet), a pretrained deep learning segmentation model that enables researchers to easily exploit the power of deep learning for the quantification of mitochondrial morphology. We tested the performance of MitoSegNet against three feature-based segmentation algorithms and the machine-learning segmentation tool Ilastik. MitoSegNet outperformed all other methods in both pixelwise and morphological segmentation accuracy. We successfully applied MitoSegNet to unseen fluorescence microscopy images of mitoGFP expressing mitochondria in wild-type and catp-6ATP13A2 mutant C. elegans adults. Additionally, MitoSegNet was capable of accurately segmenting mitochondria in HeLa cells treated with fragmentation inducing reagents. We provide MitoSegNet in a toolbox for Windows and Linux operating systems that combines segmentation with morphological analysis

    The permanently chaperone-active small heat shock protein Hsp17 from Caenorhabditis elegans exhibits topological separation of its N-terminal regions

    Get PDF
    Small Heat shock proteins (sHsps) are a family of molecular chaperones that bind nonnative proteins in an ATP-independent manner. Caenorhabditis elegans encodes 16 different sHsps, among them Hsp17, which is evolutionarily distinct from other sHsps in the nematode. The structure and mechanism of Hsp17 and how these may differ from other sHsps remain unclear. Here, we find that Hsp17 has a distinct expression pattern, structural organization, and chaperone function. Consistent with its presence under nonstress conditions, and in contrast to many other sHsps, we determined that Hsp17 is a mono-disperse, permanently active chaperone in vitro, which interacts with hundreds of different C. elegans proteins under physiological conditions. Additionally, our cryo-EM structure of Hsp17 reveals that in the 24-mer complex, 12 N-terminal regions are involved in its chaperone function. These flexible regions are located on the outside of the spherical oligomer, whereas the other 12 N-terminal regions are engaged in stabilizing interactions in its interior. This allows the same region in Hsp17 to perform different functions depending on the topological context. Taken together, our results reveal structural and functional features that further define the structural basis of permanently active sHsps

    Evolution of optically faint AGN from COMBO-17 and GEMS

    Full text link
    We have mapped the AGN luminosity function and its evolution between z=1 and z=5 down to apparent magnitudes of R<24R<24. Within the GEMS project we have analysed HST-ACS images of many AGN in the Extended Chandra Deep Field South, enabling us to assess the evolution of AGN host galaxy properties with cosmic time.Comment: to appear in proceedings 'Multiwavelength AGN Surveys', Cozumel 200
    corecore