49 research outputs found

    Genomic characterization of a repetitive motif strongly associated with developmental genes in Drosophila

    Get PDF
    BACKGROUND: Non-coding DNA represents a high proportion of all metazoan genomes. Although an undetermined fraction of this DNA may be considered devoid of any function, it also contains important information residing in specific cis-regulatory sequences. RESULTS: We report a 27 bp motif that is overrepresented within the fly genome. This motif does not show any significant similarity with transposon sequences and is strongly associated with genes involved in development and/or signal transduction. The 27 bp motif is preferentially located within introns, and has a tendency to be present in multiple copies around genes. Furthermore, it is often found embedded in known non-coding regulatory regions. The regulatory network defined by this motif is partially shared in D. pseudoobscura. CONCLUSION: We have identified a 27 bp cis-regulatory sequence widely distributed within the Drosophila genome in association with developmental genes. This motif may be very useful towards the annotation of functional regulatory regions within the Drosophila genome and the construction of regulatory networks of Drosophila development

    The MYST-Containing Protein Chameau Is Required for Proper Sensory Organ Specification during Drosophila Thorax Morphogenesis

    Get PDF
    The adult thorax of Drosophila melanogaster is covered by a stereotyped pattern of mechanosensory bristles called macrochaetes. Here, we report that the MYST containing protein Chameau (Chm) contributes to the establishment of this pattern in the most dorsal part of the thorax. Chm mutant pupae present extra-dorsocentral (DC) and scutellar (SC) macrochaetes, but a normal number of the other macrochaetes. We provide evidences that chm restricts the singling out of sensory organ precursors from proneural clusters and genetically interacts with transcriptional regulators involved in the regulation of achaete and scute in the DC and SC proneural cluster. This function of chm likely relies on chromatin structure regulation since a protein with a mutation in the conserved catalytic site fails to rescue the formation of supernumerary DC and SC bristles in chm mutant flies. This is further supported by the finding that mutations in genes encoding chromatin modifiers and remodeling factors, including Polycomb group (PcG) and Trithorax group (TrxG) members, dominantly modulate the penetrance of chm extra bristle phenotype. These data support a critical role for chromatin structure modulation in the establishment of the stereotyped sensory bristle pattern in the fly thorax

    The Ly6 Protein Coiled Is Required for Septate Junction and Blood Brain Barrier Organisation in Drosophila

    Get PDF
    Background: Genetic analysis of the Drosophila septate junctions has greatly contributed to our understanding of the mechanisms controlling the assembly of these adhesion structures, which bear strong similarities with the vertebrate tight junctions and the paranodal septate junctions. These adhesion complexes share conserved molecular components and have a common function: the formation of paracellular barriers restraining the diffusion of solutes through epithelial and glial envelopes. Methodology/Principal Findings: In this work we characterise the function of the Drosophila cold gene, that codes for a protein belonging to the Ly6 superfamily of extracellular ligands. Analysis of cold mutants shows that this gene is specifically required for the organisation of the septate junctions in epithelial tissues and in the nervous system, where its contribution is essential for the maintenance of the blood-brain barrier. We show that cold acts in a cell autonomous way, and we present evidence indicating that this protein could act as a septate junction component. Conclusion/Significance: We discuss the specific roles of cold and three other Drosophila members of the Ly6 superfamily that have been shown to participate in a non-redundant way in the process of septate junction assembly. We propose tha

    Transcriptional Regulation by CHIP/LDB Complexes

    Get PDF
    It is increasingly clear that transcription factors play versatile roles in turning genes “on” or “off” depending on cellular context via the various transcription complexes they form. This poses a major challenge in unraveling combinatorial transcription complex codes. Here we use the powerful genetics of Drosophila combined with microarray and bioinformatics analyses to tackle this challenge. The nuclear adaptor CHIP/LDB is a major developmental regulator capable of forming tissue-specific transcription complexes with various types of transcription factors and cofactors, making it a valuable model to study the intricacies of gene regulation. To date only few CHIP/LDB complexes target genes have been identified, and possible tissue-dependent crosstalk between these complexes has not been rigorously explored. SSDP proteins protect CHIP/LDB complexes from proteasome dependent degradation and are rate-limiting cofactors for these complexes. By using mutations in SSDP, we identified 189 down-stream targets of CHIP/LDB and show that these genes are enriched for the binding sites of APTEROUS (AP) and PANNIER (PNR), two well studied transcription factors associated with CHIP/LDB complexes. We performed extensive genetic screens and identified target genes that genetically interact with components of CHIP/LDB complexes in directing the development of the wings (28 genes) and thoracic bristles (23 genes). Moreover, by in vivo RNAi silencing we uncovered novel roles for two of the target genes, xbp1 and Gs-alpha, in early development of these structures. Taken together, our results suggest that loss of SSDP disrupts the normal balance between the CHIP-AP and the CHIP-PNR transcription complexes, resulting in down-regulation of CHIP-AP target genes and the concomitant up-regulation of CHIP-PNR target genes. Understanding the combinatorial nature of transcription complexes as presented here is crucial to the study of transcription regulation of gene batteries required for development

    A late role for a subset of neurogenic genes to limit sensory precursor recruitments in Drosophila embryos

    Full text link
    In Drosophila , mutations in a class of genes, the neurogenic genes, produce an excess of neurons. This neural hyperplasia has been attributed to the formation of more than the normal number of neuronal precursor cells at the expense of epidermal cells. In order to find out whether the neurogenic genes only act at this intial step of neurogenesis, we studied the replication pattern of the sensory organ precursor cells by monitoring BrdU incorporation in embryos mutant for Notch ( N ), Delta ( Dl ), mastermind ( mam ), almondex ( amx ), neuralized ( neu ), big brain ( bib ) and the Enhancer of split -Complex ( E ( spl )- C ). Using temperature sensitive alleles of two of the neurogenic genes, DI and N , we also induced an acute increase of replicating sensory precursors by shifting briefly to the restricted temperature. We have found that the loss of function of all the seven neurogenic loci that were tested causes an increase in replicating sensory precursor cells, consistent with the model that these neurogenic genes normally participate in the process of restricting the number of neuronal precursors. Whereas the temporal pattern of replication appeared normal in mutants of five of the seven neurogenic loci, in N and mam embryos replicating PNS cells are present beyond the time when they normally undergo replication. Experiments with colchicine suggest that many of these late replicating cells may be newly emerging precursors and probably not additional cell divisions of already recruited precursors. Thus, different neurogenic genes may be required over different periods of time for the specification of sensory precursor cells.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/47511/1/427_2004_Article_BF00188736.pd

    New members of the Drosophila Myc transcription factor subfamily revealed by a genome-wide examination for basic helix-loop-helix genes

    No full text
    The basic helix-loop-helix (bHLH) proteins represent an evolutionary conserved class of transcription factors that are known to play important roles in cell determination and differentiation during animal embryonic development. Following an exhaustive search of the complete Drosophila genome sequence using a PSI-BLAST strategy, we identified 19 new genes, bringing the total number of bHLH-encoding genes in the Drosophila genome to 56. These new genes belong to various subfamilies of bHLH transcription factors, such as the Daughterless, Hairy-Enhancer of split, bHLH-PAS or bHLHZip subfamilies. The embryonic expression pattern of each of these new genes has been analyzed by in situ hybridization. By looking for closely structurally related motifs, we found two genes that represent likely orthologues of vertebrate Mnt and Mlx. Together with previous reports, our data suggest that, similar to networks involved in neurogenesis and myogenesis, the network of Myc-related genes has been globally conserved throughout evolution
    corecore