340 research outputs found

    EVALUATION OF LOW-COST DEPTH SENSORS FOR OUTDOOR APPLICATIONS

    Get PDF
    Depth information is a key component that allows a computer to reproduce human vision in plenty of applications from manufacturing, to robotics and autonomous driving. The Microsoft Kinect has brought depth sensing to another level resulting in a large number of low cost, small form factor depth sensors. Although these sensors can efficiently produce data over a wide dynamic range of sensing applications and within different environments, most of them are rather suitable for indoor applications. Operating in outdoor areas is a challenge because of undesired illumination, usually strong sunlight or surface scattering, which degrades measurement accuracy. Therefore, after presenting the different working principle of existing depth cameras, our study aims to evaluate where two very recent sensors, the AD-FXTOF1-EBZ and the flexx2, stand towards the issue of outdoor environment. In particular, measurement tests will be performed on different types of materials subjected to various illumination in order to evaluate the potential accuracy of such sensors

    Sequential localization of a complex electron fluid

    Full text link
    Complex and correlated quantum systems with promise for new functionality often involve entwined electronic degrees of freedom. In such materials, highly unusual properties emerge and could be the result of electron localization. Here, a cubic heavy fermion metal governed by spins and orbitals is chosen as a model system for this physics. Its properties are found to originate from surprisingly simple low-energy behavior, with two distinct localization transitions driven by a single degree of freedom at a time. This result is unexpected, but we are able to understand it by advancing the notion of sequential destruction of an SU(4) spin-orbital-coupled Kondo entanglement. Our results implicate electron localization as a unified framework for strongly correlated materials and suggest ways to exploit multiple degrees of freedom for quantum engineering.Comment: 21 pages, 4 figures (preprint format

    Observed temporal evolution of global mean age of stratospheric air for the 2002 to 2010 period

    Get PDF
    An extensive observational data set, consisting of more than 106 SF6 vertical profiles distributed globally from MIPAS measurements has been condensed into monthly zonal means of mean age of air for the period September 2002 to January 2010, binned at 10∘^\circ latitude and 1–2 km altitude. The data were analysed with respect to their temporal variation by fitting a regression model consisting of a constant and a linear increase term, 2 proxies for the QBO variation, sinusoidal terms for the seasonal and semiannual variation and overtones for the correction of the shapes to the observed data set. The impact of subsidence of mesospheric SF6-depleted air and in-mixing into non-polar latitudes on mid-latitudinal absolute age of air and its linear increase was assessed and found to be small. The linear increase of mean age of stratospheric air was found to be positive and partly larger than the trend derived by Engel et al. (2009) for most of the Northern mid-latitudes, the middle stratosphere in the tropics, and parts of the Southern mid latitudes, as well as for the Southern polar upper stratosphere. Multi-year decrease of age of air was found for the lowermost and the upper stratospheric tropics, for parts of Southern mid-latitudes, and for the Northern polar regions. Analysis of the amplitudes and phases of the seasonal variation shed light on the coupling of stratospheric regions to each other. In particular, the Northern mid-latitude stratosphere is well coupled to the tropics, while the Northern lowermost mid-latitudinal stratosphere is decoupled, confirming the separation of the shallow branch of the Brewer-Dobson circulation from the deep branch. We suggest an overall increased tropical upwelling, together with weakening of mixing barriers, especially in the Northern Hemisphere, as a hypothetical model to explain the observed pattern of linear multi-year increase/decrease, and amplitudes and phase shifts of the seasonal variation

    Observed temporal evolution of global mean age of stratospheric air for the 2002 to 2010 period

    Get PDF
    An extensive observational data set, consisting of more than 10<sup>6</sup> SF<sub>6</sub> vertical profiles from MIPAS measurements distributed over the whole globe has been condensed into monthly zonal means of mean age of air for the period September 2002 to January 2010, binned at 10° latitude and 1–2 km altitude. The data were analysed with respect to their temporal variation by fitting a regression model consisting of a constant and a linear increase term, 2 proxies for the QBO variation, sinusoidal terms for the seasonal and semi-annual variation and overtones for the correction of the shapes to the observed data set. The impact of subsidence of mesospheric SF<sub>6</sub>-depleted air and in-mixing into non-polar latitudes on mid-latitudinal absolute age of air and its linear increase was assessed and found to be small. <br><br> The linear increase of mean age of stratospheric air was found to be positive and partly larger than the trend derived by Engel et al. (2009) for most of the Northern mid-latitudes, the middle stratosphere in the tropics, and parts of the Southern mid-latitudes, as well as for the Southern polar upper stratosphere. Multi-year decrease of age of air was found for the lowermost and the upper stratospheric tropics, for parts of Southern mid-latitudes, and for the Northern polar regions. Analysis of the amplitudes and phases of the seasonal variation shed light on the coupling of stratospheric regions to each other. In particular, the Northern mid-latitude stratosphere is well coupled to the tropics, while the Northern lowermost mid-latitudinal stratosphere is decoupled, confirming the separation of the shallow branch of the Brewer-Dobson circulation from the deep branch. We suggest an overall increased tropical upwelling, together with weakening of mixing barriers, especially in the Northern Hemisphere, as a hypothetical model to explain the observed pattern of linear multi-year increase/decrease, and amplitudes and phase shifts of the seasonal variation

    Methane and nitrous oxide retrievals from MIPAS-ENVISAT

    Get PDF
    We present the strongly revised IMK/IAA MIPAS-ENVISAT CH4 and N2O data products for the MIPAS full resolution (versions V5H_CH4_21 and V5H_N2O_21) and for the reduced resolution period (versions V5R_CH4_224, V5R_CH4_225, V5R_N2O_224 and V5R_N2O_225). Differences to older retrieval versions which are known to have a high bias are discussed. The usage of the HITRAN 2008 spectroscopic dataset leads to lower values for both gases in the lower part of the profile. The improved correction of additive radiance offsets and handling of background radiance continua allows for aerosol contributions at altitudes in the upper stratosphere and above. These changes lead to more plausible values both in the radiance offset and in the profiles of the continuum absorption coefficients. They also increase the fraction of converged retrievals. Some minor changes were applied to the constraint of the inverse problem, causing small differences in the retrieved profiles, mostly due to the relaxation of off-diagonal regularisation matrix elements for the calculation of jointly retrieved absorption coefficient profiles. Spectral microwindows have been adjusted to avoid areas with saturated spectral signatures. Jointly retrieving profiles of water vapour and nitric acid serves to compensate spectroscopic inconsistencies. We discuss the averaging kernels of the products and their vertical resolution

    Determination of the atmospheric lifetime and global warming potential of sulfur hexafluoride using a three-dimensional model

    Get PDF
    We have used the Whole Atmosphere Community Climate Model (WACCM), with an updated treatment of loss processes, to determine the atmospheric lifetime of sulfur hexafluoride (SF6). The model includes the following SF6 removal processes: photolysis, electron attachment and reaction with mesospheric metal atoms. The Sodankylä Ion Chemistry (SIC) model is incorporated into the standard version of WACCM to produce a new version with a detailed D region ion chemistry with cluster ions and negative ions. This is used to determine a latitude- and altitude-dependent scaling factor for the electron density in the standard WACCM in order to carry out multi-year SF6 simulations. The model gives a mean SF6 lifetime over an 11-year solar cycle (τ) of 1278 years (with a range from 1120 to 1475 years), which is much shorter than the currently widely used value of 3200 years, due to the larger contribution (97.4 %) of the modelled electron density to the total atmospheric loss. The loss of SF6 by reaction with mesospheric metal atoms (Na and K) is far too slow to affect the lifetime. We investigate how this shorter atmospheric lifetime impacts the use of SF6 to derive stratospheric age of air. The age of air derived from this shorter lifetime SF6 tracer is longer by 9 % in polar latitudes at 20 km compared to a passive SF6 tracer. We also present laboratory measurements of the infrared spectrum of SF6 and find good agreement with previous studies. We calculate the resulting radiative forcings and efficiencies to be, on average, very similar to those reported previously. Our values for the 20-, 100- and 500-year global warming potentials are 18 000, 23 800 and 31 300, respectively
    • …
    corecore