761 research outputs found

    Oxygen-Independent Stabilization of Hypoxia Inducible Factor (HIF)-1 during RSV Infection

    Get PDF
    BACKGROUND: Hypoxia-inducible factor 1 (HIF)-1alpha is a transcription factor that functions as master regulator of mammalian oxygen homeostasis. In addition, recent studies identified a role for HIF-1alpha as transcriptional regulator during inflammation or infection. Based on studies showing that respiratory syncytial virus (RSV) is among the most potent biological stimuli to induce an inflammatory milieu, we hypothesized a role of HIF-1alpha as transcriptional regulator during infections with RSV. METHODOLOGY, PRINCIPAL FINDINGS: We gained first insight from immunohistocemical studies of RSV-infected human pulmonary epithelia that were stained for HIF-1alpha. These studies revealed that RSV-positive cells also stained for HIF-1alpha, suggesting concomitant HIF-activation during RSV infection. Similarly, Western blot analysis confirmed an approximately 8-fold increase in HIF-1alpha protein 24 h after RSV infection. In contrast, HIF-1alpha activation was abolished utilizing UV-treated RSV. Moreover, HIF-alpha-regulated genes (VEGF, CD73, FN-1, COX-2) were induced with RSV infection of wild-type cells. In contrast, HIF-1alpha dependent gene induction was abolished in pulmonary epithelia following siRNA mediated repression of HIF-1alpha. Measurements of the partial pressure of oxygen in the supernatants of RSV infected epithelia or controls revealed no differences in oxygen content, suggesting that HIF-1alpha activation is not caused by RSV associated hypoxia. Finally, studies of RSV pneumonitis in mice confirmed HIF-alpha-activation in a murine in vivo model. CONCLUSIONS/SIGNIFICANCE: Taking together, these studies suggest hypoxia-independent activation of HIF-1alpha during infection with RSV in vitro and in vivo

    Toll-like receptor pre-stimulation protects mice against lethal infection with highly pathogenic influenza viruses

    Get PDF
    <p>Abstract</p> <p>Since the beginning of the 20th century, humans have experienced four influenza pandemics, including the devastating 1918 'Spanish influenza'. Moreover, H5N1 highly pathogenic avian influenza (HPAI) viruses are currently spreading worldwide, although they are not yet efficiently transmitted among humans. While the threat of a global pandemic involving a highly pathogenic influenza virus strain looms large, our mechanisms to address such a catastrophe remain limited. Here, we show that pre-stimulation of Toll-like receptors (TLRs) 2 and 4 increased resistance against influenza viruses known to induce high pathogenicity in animal models. Our data emphasize the complexity of the host response against different influenza viruses, and suggest that TLR agonists might be utilized to protect against lethality associated with highly pathogenic influenza virus infection in humans.</p

    Swelling-Activated Ca2+ Channels Trigger Ca2+ Signals in Merkel Cells

    Get PDF
    Merkel cell-neurite complexes are highly sensitive touch receptors comprising epidermal Merkel cells and sensory afferents. Based on morphological and molecular studies, Merkel cells are proposed to be mechanosensory cells that signal afferents via neurotransmission; however, functional studies testing this hypothesis in intact skin have produced conflicting results. To test this model in a simplified system, we asked whether purified Merkel cells are directly activated by mechanical stimulation. Cell shape was manipulated with anisotonic solution changes and responses were monitored by Ca2+ imaging with fura-2. We found that hypotonic-induced cell swelling, but not hypertonic solutions, triggered cytoplasmic Ca2+ transients. Several lines of evidence indicate that these signals arise from swelling-activated Ca2+-permeable ion channels. First, transients were reversibly abolished by chelating extracellular Ca2+, demonstrating a requirement for Ca2+ influx across the plasma membrane. Second, Ca2+ transients were initially observed near the plasma membrane in cytoplasmic processes. Third, voltage-activated Ca2+ channel (VACC) antagonists reduced transients by half, suggesting that swelling-activated channels depolarize plasma membranes to activate VACCs. Finally, emptying internal Ca2+ stores attenuated transients by 80%, suggesting Ca2+ release from stores augments swelling-activated Ca2+ signals. To identify candidate mechanotransduction channels, we used RT-PCR to amplify ion-channel transcripts whose pharmacological profiles matched those of hypotonic-evoked Ca2+ signals in Merkel cells. We found 11 amplicons, including PKD1, PKD2, and TRPC1, channels previously implicated in mechanotransduction in other cells. Collectively, these results directly demonstrate that Merkel cells are activated by hypotonic-evoked swelling, identify cellular signaling mechanisms that mediate these responses, and support the hypothesis that Merkel cells contribute to touch reception in the Merkel cell-neurite complex

    NGF Is an Essential Survival Factor for Bronchial Epithelial Cells during Respiratory Syncytial Virus Infection

    Get PDF
    Background: Overall expression of neurotrophins in the respiratory tract is upregulated in infants infected by the respiratory syncytial virus (RSV), but it is unclear where (structural vs. inflammatory cells, upper vs. lower airways) and why, these changes occur. We analyzed systematically the expression of neurotrophic factors and receptors following RSV infection of human nasal, tracheal, and bronchial epithelial cells, and tested the hypothesis that neurotrophins work as innate survival factors for infected respiratory epithelia. Methodology: Expression of neurotrophic factors (nerve growth factor, NGF; brain-derived neurotrophic factor, BDNF) and receptors (trkA, trkB, p75) was analyzed at the protein level by immunofluorescence and flow cytometry and at the mRNA level by real-time PCR. Targeted siRNA was utilized to blunt NGF expression, and its effect on virus-induced apoptosis/ necrosis was evaluated by flow cytometry following annexin V/7-AAD staining. Principal Findings: RSV infection was more efficient in cells from more distal (bronchial) vs. more proximal origin. In bronchial cells, RSV infection induced transcript and protein overexpression of NGF and its high-affinity receptor trkA, with concomitant downregulation of the low-affinity p75 NTR. In contrast, tracheal cells exhibited an increase in BDNF, trkA and trkB, and nasal cells increased only trkA. RSV-infected bronchial cells transfected with NGF-specific siRNA exhibited decreased trkA and increased p75 NTR expression. Furthermore, the survival of bronchial epithelial cells was dramaticall

    Monomeric and Dimeric CXCL8 Are Both Essential for In Vivo Neutrophil Recruitment

    Get PDF
    Rapid mobilization of neutrophils from vasculature to the site of bacterial/viral infections and tissue injury is a critical step in successful resolution of inflammation. The chemokine CXCL8 plays a central role in recruiting neutrophils. A characteristic feature of CXCL8 is its ability to reversibly exist as both monomers and dimers, but whether both forms exist in vivo, and if so, the relevance of each form for in vivo function is not known. In this study, using a ‘trapped’ non-associating monomer and a non-dissociating dimer, we show that (i) wild type (WT) CXCL8 exists as both monomers and dimers, (ii) the in vivo recruitment profiles of the monomer, dimer, and WT are distinctly different, and (iii) the dimer is essential for initial robust recruitment and the WT is most active for sustained recruitment. Using a microfluidic device, we also observe that recruitment is not only dependent on the total amount of CXCL8 but also on the steepness of the gradient, and the gradients created by different CXCL8 variants elicit different neutrophil migratory responses. CXCL8 mediates its function by binding to CXCR2 receptor on neutrophils and glycosaminoglycans (GAGs) on endothelial cells. On the basis of our data, we propose that dynamic equilibrium between CXCL8 monomers and dimers and their differential binding to CXCR2 and GAGs mediates and regulates in vivo neutrophil recruitment. Our finding that both CXCL8 monomer and dimer are functional in vivo is novel, and indicates that the CXCL8 monomer-dimer equilibrium and neutrophil recruitment are intimately linked in health and disease

    Activation of Hypoxia Inducible Factor 1 Is a General Phenomenon in Infections with Human Pathogens

    Get PDF
    Background: Hypoxia inducible factor (HIF)-1 is the key transcriptional factor involved in the adaptation process of cells and organisms to hypoxia. Recent findings suggest that HIF-1 plays also a crucial role in inflammatory and infectious diseases. Methodology/Principal Findings: Using patient skin biopsies, cell culture and murine infection models, HIF-1 activation was determined by immunohistochemistry, immunoblotting and reporter gene assays and was linked to cellular oxygen consumption. The course of a S. aureus peritonitis was determined upon pharmacological HIF-1 inhibition. Activation of HIF-1 was detectable (i) in all ex vivo in biopsies of patients suffering from skin infections, (ii) in vitro using cell culture infection models and (iii) in vivo using murine intravenous and peritoneal S. aureus infection models. HIF-1 activation by human pathogens was induced by oxygen-dependent mechanisms. Small colony variants (SCVs) of S. aureus known to cause chronic infections did not result in cellular hypoxia nor in HIF-1 activation. Pharmaceutical inhibition of HIF-1 activation resulted in increased survival rates of mice suffering from a S. aureus peritonitis. Conclusions/Significance: Activation of HIF-1 is a general phenomenon in infections with human pathogenic bacteria, viruses, fungi and protozoa. HIF-1-regulated pathways might be an attractive target to modulate the course of life-threatening infections

    Investigating NF-kappa B signaling in lung fibroblasts in 2D and 3D culture systems

    Get PDF
    BACKGROUND: Inflammatory respiratory diseases are amongst major global health challenges. Lung fibroblasts have been shown to play a key role in lung inflammatory responses. However, their exact role in initiation and maintenance of lung diseases has remained elusive partly due to the limited availability of physiologically relevant in vitro models. Therefore, developing new tools that enable investigating the molecular pathways (e.g. nuclear factor-kappa B (NF-κB) activation) that underpin inflammatory responses in fibroblasts could be a valuable resource for scientists working in this area of research. RESULTS: In order to investigate NF-κB activation in response to pro-inflammatory stimuli in real-time, we first developed two detection systems based on nuclear localization of NF-κB by immunostaining and luciferase reporter assay system. Furthermore using electrospun porous scaffolds, with similar geometry to human lung extracellular matrix, we developed 3D cultures of lung fibroblasts allowing comparing NF-κB activation in response to pro-inflammatory stimuli (i.e. TNF-α) in 2D and 3D. Our data clearly show that the magnitude of NF-κB activation in 2D cultures is substantially higher than 3D cultures. However, unlike 2D cultures, cells in the 3D model remained responsive to TNF-α at higher concentrations. The more subdued and wider dynamic range of NF-κB responses in 3D culture system was associated with a different expression pattern for TNF receptor I in 3D versus 2D cultures collectively reflecting a more in vivo like TNF receptor I expression and NF-κB activation pattern in the 3D system. CONCLUSION: Our data suggest that lung fibroblasts are actively involved in the pathogenesis of lung inflammation by activation of NF-κB signaling pathway. The 3D culture detection system provides a sensitive and biologically relevant tool for investigating different pro-inflammatory events involving lung fibroblasts

    Observation of the Rare Decay of the η Meson to Four Muons

    Get PDF
    A search for the rare η→μ+μ−μ+μ− double-Dalitz decay is performed using a sample of proton-proton collisions, collected by the CMS experiment at the CERN LHC with high-rate muon triggers during 2017 and 2018 and corresponding to an integrated luminosity of 101  fb−1. A signal having a statistical significance well in excess of 5 standard deviations is observed. Using the η→μ+μ− decay as normalization, the branching fraction B(η→μ+μ−μ+μ−)=[5.0±0.8(stat)±0.7(syst)±0.7(B2μ)]×10−9 is measured, where the last term is the uncertainty in the normalization channel branching fraction. This work achieves an improved precision of over 5 orders of magnitude compared to previous results, leading to the first measurement of this branching fraction, which is found to agree with theoretical predictions

    Muon identification using multivariate techniques in the CMS experiment in proton-proton collisions at (s)=13\sqrt{(s)} = 13 TeV

    Get PDF
    The identification of prompt and isolated muons, as well as muons from heavy-flavour hadron decays, is an important task. We developed two multivariate techniques to provide highly efficient identification for muons with transverse momentum greater than 10 GeV. One provides a continuous variable as an alternative to a cut-based identification selection and offers a better discrimination power against misidentified muons. The other one selects prompt and isolated muons by using isolation requirements to reduce the contamination from nonprompt muons arising in heavy-flavour hadron decays. Both algorithms are developed using 59.7 fb1^{-1} of proton-proton collisions data at a centre-of-mass energy of √(s)=13 TeV collected in 2018 with the CMS experiment at the CERN LHC
    corecore