48 research outputs found

    Discrete localized modes supported by an inhomogeneous defocusing nonlinearity

    Full text link
    We report that infinite and semi-infinite lattices with spatially inhomogeneous self-defocusing (SDF)\ onsite nonlinearity, whose strength increases rapidly enough toward the lattice periphery, support stable unstaggered (UnST) discrete bright solitons, which do not exist in lattices with the spatially uniform SDF nonlinearity. The UnST solitons coexist with stable staggered (ST) localized modes, which are always possible under the defocusing onsite nonlinearity. The results are obtained in a numerical form, and also by means of variational approximation (VA). In the semi-infinite (truncated) system, some solutions for the UnST surface solitons are produced in an exact form. On the contrary to surface discrete solitons in uniform truncated lattices, the threshold value of the norm vanishes for the UnST solitons in the present system. Stability regions for the novel UnST solitons are identified. The same results imply the existence of ST discrete solitons in lattices with the spatially growing self-focusing nonlinearity, where such solitons cannot exist either if the nonlinearity is homogeneous. In addition, a lattice with the uniform onsite SDF nonlinearity and exponentially decaying inter-site coupling is introduced and briefly considered too. Via a similar mechanism, it may also support UnST discrete solitons, under the action of the SDF nonlinearity. The results may be realized in arrayed optical waveguides and collisionally inhomogeneous Bose-Einstein condensates trapped in deep optical lattices. A generalization for a two-dimensional system is briefly considered too.Comment: 14 pages, 7 figures, accepted for publication in PR

    Interface solitons in one-dimensional locally-coupled lattice systems

    Full text link
    Fundamental solitons pinned to the interface between two discrete lattices coupled at a single site are investigated. Serially and parallel-coupled identical chains (\textit{System 1} and \textit{System 2}), with the self-attractive on-site cubic nonlinearity, are considered in one dimension. In these two systems, which can be readily implemented as arrays of nonlinear optical waveguides, symmetric, antisymmetric and asymmetric solitons are investigated by means of the variational approximation (VA) and numerical methods. The VA demonstrates that the antisymmetric solitons exist in the entire parameter space, while the symmetric and asymmetric modes can be found below some critical value of the coupling parameter. Numerical results confirm these predictions for the symmetric and asymmetric fundamental modes. The existence region of numerically found antisymmetric solitons is also limited by a certain value of the coupling parameter. The symmetric solitons are destabilized via a supercritical symmetry-breaking pitchfork bifurcation, which gives rise to stable asymmetric solitons, in both systems. The antisymmetric fundamental solitons, which may be stable or not, do not undergo any bifurcation. In bistability regions stable antisymmetric solitons coexist with either symmetric or asymmetric ones.Comment: 9 figure

    Extreme Events in Nonlinear Lattices

    Full text link
    The spatiotemporal complexity induced by perturbed initial excitations through the development of modulational instability in nonlinear lattices with or without disorder, may lead to the formation of very high amplitude, localized transient structures that can be named as extreme events. We analyze the statistics of the appearance of these collective events in two different universal lattice models; a one-dimensional nonlinear model that interpolates between the integrable Ablowitz-Ladik (AL) equation and the nonintegrable discrete nonlinear Schr\"odinger (DNLS) equation, and a two-dimensional disordered DNLS equation. In both cases, extreme events arise in the form of discrete rogue waves as a result of nonlinear interaction and rapid coalescence between mobile discrete breathers. In the former model, we find power-law dependence of the wave amplitude distribution and significant probability for the appearance of extreme events close to the integrable limit. In the latter model, more importantly, we find a transition in the the return time probability of extreme events from exponential to power-law regime. Weak nonlinearity and moderate levels of disorder, corresponding to weak chaos regime, favour the appearance of extreme events in that case.Comment: Invited Chapter in a Special Volume, World Scientific. 19 pages, 9 figure

    Fundamental solitons in discrete lattices with a delayed nonlinear response

    Full text link
    The formation of unstaggered localized modes in dynamical lattices can be supported by the interplay of discreteness and nonlinearity with a finite relaxation time. In rapidly responding nonlinear media, on-site discrete solitons are stable, and their broad inter-site counterparts are marginally stable, featuring a virtually vanishing real instability eigenvalue. The solitons become unstable in the case of the slowly relaxing nonlinearity. The character of the instability alters with the increase of the delay time, which leads to a change in the dynamics of unstable discrete solitons. They form robust localized breathers in rapidly relaxing media, and decay into oscillatory diffractive pattern in the lattices with a slow nonlinear response. Marginally stable solitons can freely move across the lattice.Comment: 8 figure

    High- and low-frequency phonon modes in dipolar quantum gases trapped in deep lattices

    Full text link
    We study normal modes propagating on top of the stable uniform background in arrays of dipolar Bose-Einstein condensate (BEC) droplets trapped in a deep optical lattice. Both the on-site mean-field dynamics of the droplets and their displacement due to the repulsive dipole-dipole interactions (DDIs) are taken into account. Dispersion relations for two modes, \textit{viz}., high- and low- frequency counterparts of optical and acoustic phonon modes in condensed matter, are derived analytically and verified by direct simulations, for both cases of the repulsive and attractive contact interactions. The (counterpart of the) optical-phonon branch does not exist without the DDIs. These results are relevant in the connection to emerging experimental techniques enabling real-time imaging of the condensate dynamics and direct experimental measurement of phonon dispersion relations in BECs.Comment: Physical Review A, in pres

    STATUS AND MEASURE FOR IMPROVE PASTURE CONDITIONS IN THE EASTERN PLANNING REGION OF MACEDONIA

    Get PDF
    The Eastern Planning Region occupies an area of 3548,7 km2 or 14,2% of the territory of the Republic of Macedonia. The region has 188.387 ha agricultural land. By that, the grasslands covers 119.504 ha, of which 110.640 ha under pastures and 8.864 ha under meadows, representing a significant source in the production of animal feed, especially in the mountainous areas of the region. On the other hand, on livestock unit comes 2,23 ha pasture area which shows that in this region livestock is poorly developed. As a consequence of this situation which from year to year deteriorates, pastures as a natural resource for providing feed degrade, reducing the quality of grass production and their economic value. In the absence of human factor as a corrector of the specific environmental conditions, hay production is relatively small, ranging from 300-600 kg-1ha-1. Considering the current situation, it is necessary to take certain agro-technical measures, such as introduction of methods of systematic grazing, overseeding, fertilization, weeds protection, etc., butalso introduced a system of organizational measures,as well a certain investments for larger agro and hydro technical operations how this status will be improved and agriculture but particularly livestock production become an important branch in economic development of this part of the country

    Discrete solitons in an array of quantum dots

    Full text link
    We develop a theory for the interaction of classical light fields with an a chain of coupled quantum dots (QDs), in the strong-coupling regime, taking into account the local-field effects. The QD chain is modeled by a one-dimensional (1D) periodic array of two-level quantum particles with tunnel coupling between adjacent ones. The local-field effect is taken into regard as QD depolarization in the Hartree-Fock-Bogoliubov approximation. The dynamics of the chain is described by a system of two discrete nonlinear Schr\"{o}dinger (DNLS) equations for local amplitudes of the probabilities of the ground and first excited states. The two equations are coupled by a cross-phase-modulation cubic terms, produced by the local-field action, and by linear terms too. In comparison with previously studied DNLS systems, an essentially new feature is a phase shift between the intersite-hopping constants in the two equations. By means of numerical solutions, we demonstrate that, in this QD chain, Rabi oscillations (RO) self-trap into stable bright\textit{\ Rabi solitons} or \textit{Rabi breathers}. Mobility of the solitons is considered too. The related behavior of observable quantities, such as energy, inversion, and electric-current density, is given a physical interpretation. The results apply to a realistic region of physical parameters.Comment: 12 pages, 10 figures, Phys. Rev. B, in pres

    High-speed kinks in a generalized discrete ϕ4\phi^4 model

    Get PDF
    We consider a generalized discrete ϕ4\phi^4 model and demonstrate that it can support exact moving kink solutions in the form of tanh with an arbitrarily large velocity. The constructed exact moving solutions are dependent on the specific value of the propagation velocity. We demonstrate that in this class of models, given a specific velocity, the problem of finding the exact moving solution is integrable. Namely, this problem originally expressed as a three-point map can be reduced to a two-point map, from which the exact moving solutions can be derived iteratively. It was also found that these high-speed kinks can be stable and robust against perturbations introduced in the initial conditions.Comment: 10 pages, 5 figures, submitted to a journa
    corecore