research

Fundamental solitons in discrete lattices with a delayed nonlinear response

Abstract

The formation of unstaggered localized modes in dynamical lattices can be supported by the interplay of discreteness and nonlinearity with a finite relaxation time. In rapidly responding nonlinear media, on-site discrete solitons are stable, and their broad inter-site counterparts are marginally stable, featuring a virtually vanishing real instability eigenvalue. The solitons become unstable in the case of the slowly relaxing nonlinearity. The character of the instability alters with the increase of the delay time, which leads to a change in the dynamics of unstable discrete solitons. They form robust localized breathers in rapidly relaxing media, and decay into oscillatory diffractive pattern in the lattices with a slow nonlinear response. Marginally stable solitons can freely move across the lattice.Comment: 8 figure

    Similar works