48,203 research outputs found
Hadron production in heavy ion collisions: Fragmentation and recombination from a dense parton phase
We discuss hadron production in heavy ion collisions at RHIC. We argue that
hadrons at transverse momenta P_T < 5 GeV are formed by recombination of
partons from the dense parton phase created in central collisions at RHIC. We
provide a theoretical description of the recombination process for P_T > 2 GeV.
Below P_T = 2 GeV our results smoothly match a purely statistical description.
At high transverse momentum hadron production is well described in the language
of perturbative QCD by the fragmentation of partons. We give numerical results
for a variety of hadron spectra, ratios and nuclear suppression factors. We
also discuss the anisotropic flow v_2 and give results based on a flow in the
parton phase. Our results are consistent with the existence of a parton phase
at RHIC hadronizing at a temperature of 175 MeV and a radial flow velocity of
0.55c.Comment: 25 pages LaTeX, 18 figures; v2: some references updated; v3: some
typos fixe
Light Hadron Spectroscopy
Recent developments in calculations of the light hadron spectrum are
reviewed. Particular emphasis is placed on discussion of to what extent the
quenched spectrum agrees with experiment. Recent progress, both for quenched
and full QCD, in reducing scaling violation with the use of improved actions is
presented.Comment: Plenary talk presented at Lattice 97, 13 pages, LaTeX (espcrc2,epsf),
14 ps figure
Thermal model for RHIC, part I: particle ratios and spectra
A simple thermal model with single freeze-out and flow is used to analyze the
ratios of hadron yields and the hadron transverse-mass spectra measured in 130
GeV Au+Au collisions at RHIC. An overall very good agreement between the model
predictions and the data is achieved for all measured hadron species, including
hyperons.Comment: Talk presented at II International Workshop on Hadron Physics, 25-29
September 2002, Coimbra, Portugal (9 pages
Recommended from our members
Measurement of charm and bottom production from semileptonic hadron decays in p+p collisions at s =200 GeV
Measurements of the differential production of electrons from open-heavy-flavor hadrons with charm- and bottom-quark content in p+p collisions at s=200 GeV are presented. The measurements proceed through displaced-vertex analyses of electron tracks from the semileptonic decay of charm and bottom hadrons using the PHENIX silicon-vertex detector. The relative contribution of electrons from bottom decays to inclusive heavy-flavor-electron production is found to be consistent with fixed-order-plus-next-to-leading-log perturbative-QCD calculations within experimental and theoretical uncertainties. These new measurements in p+p collisions provide a precision baseline for comparable forthcoming measurements in A+A collisions
Nuclear dependence coefficient for the Drell-Yan and J/ production
Define the nuclear dependence coefficient in terms of ratio
of transverse momentum spectrum in hadron-nucleus and in hadron-nucleon
collisions: . We argue that in small region, the
for the Drell-Yan and J/ production is given by a universal function:\
, where parameters a and b are completely determined by either
calculable quantities or independently measurable physical observables. We
demonstrate that this universal function is insensitive to the
A for normal nuclear targets. For a color deconfined nuclear medium, the
becomes strongly dependent on the A. We also show that our
for the Drell-Yan process is naturally linked to perturbatively
calculated at large without any free parameters, and the
is consistent with E772 data for all .Comment: latex, 28 pages, 10 figures, updated two figures, and add more
discussion
- …