48,203 research outputs found

    Hadron production in heavy ion collisions: Fragmentation and recombination from a dense parton phase

    Full text link
    We discuss hadron production in heavy ion collisions at RHIC. We argue that hadrons at transverse momenta P_T < 5 GeV are formed by recombination of partons from the dense parton phase created in central collisions at RHIC. We provide a theoretical description of the recombination process for P_T > 2 GeV. Below P_T = 2 GeV our results smoothly match a purely statistical description. At high transverse momentum hadron production is well described in the language of perturbative QCD by the fragmentation of partons. We give numerical results for a variety of hadron spectra, ratios and nuclear suppression factors. We also discuss the anisotropic flow v_2 and give results based on a flow in the parton phase. Our results are consistent with the existence of a parton phase at RHIC hadronizing at a temperature of 175 MeV and a radial flow velocity of 0.55c.Comment: 25 pages LaTeX, 18 figures; v2: some references updated; v3: some typos fixe

    Light Hadron Spectroscopy

    Get PDF
    Recent developments in calculations of the light hadron spectrum are reviewed. Particular emphasis is placed on discussion of to what extent the quenched spectrum agrees with experiment. Recent progress, both for quenched and full QCD, in reducing scaling violation with the use of improved actions is presented.Comment: Plenary talk presented at Lattice 97, 13 pages, LaTeX (espcrc2,epsf), 14 ps figure

    Thermal model for RHIC, part I: particle ratios and spectra

    Full text link
    A simple thermal model with single freeze-out and flow is used to analyze the ratios of hadron yields and the hadron transverse-mass spectra measured in 130 GeV Au+Au collisions at RHIC. An overall very good agreement between the model predictions and the data is achieved for all measured hadron species, including hyperons.Comment: Talk presented at II International Workshop on Hadron Physics, 25-29 September 2002, Coimbra, Portugal (9 pages

    Nuclear dependence coefficient α(A,qT)\alpha(A,q_T) for the Drell-Yan and J/ψ\psi production

    Full text link
    Define the nuclear dependence coefficient α(A,qT)\alpha(A,q_T) in terms of ratio of transverse momentum spectrum in hadron-nucleus and in hadron-nucleon collisions: dσhAdqT2/dσhNdqT2≡Aα(A,qT)\frac{d\sigma^{hA}}{dq_T^2}/ \frac{d\sigma^{hN}}{dq_T^2}\equiv A^{\alpha(A,q_T)}. We argue that in small qTq_T region, the α(A,qT)\alpha(A,q_T) for the Drell-Yan and J/ψ\psi production is given by a universal function:\ a+bqT2a+b q_T^2, where parameters a and b are completely determined by either calculable quantities or independently measurable physical observables. We demonstrate that this universal function α(A,qT)\alpha(A,q_T) is insensitive to the A for normal nuclear targets. For a color deconfined nuclear medium, the α(A,qT)\alpha(A,q_T) becomes strongly dependent on the A. We also show that our α(A,qT)\alpha(A,q_T) for the Drell-Yan process is naturally linked to perturbatively calculated α(A,qT)\alpha(A,q_T) at large qTq_T without any free parameters, and the α(A,qT)\alpha(A,q_T) is consistent with E772 data for all qTq_T.Comment: latex, 28 pages, 10 figures, updated two figures, and add more discussion
    • …
    corecore