67 research outputs found

    Do cancer cells undergo phenotypic switching? The case for imperfect cancer stem cell markers

    Get PDF
    The identification of cancer stem cells in vivo and in vitro relies on specific surface markers that should allow to sort cancer cells in phenotypically distinct subpopulations. Experiments report that sorted cancer cell populations after some time tend to express again all the original markers, leading to the hypothesis of phenotypic switching, according to which cancer cells can transform stochastically into cancer stem cells. Here we explore an alternative explanation based on the hypothesis that markers are not perfect and are thus unable to identify all cancer stem cells. Our analysis is based on a mathematical model for cancer cell proliferation that takes into account phenotypic switching, imperfect markers and error in the sorting process. Our conclusion is that the observation of reversible expression of surface markers after sorting does not provide sufficient evidence in support of phenotypic switching

    Senescent Cells in Growing Tumors: Population Dynamics and Cancer Stem Cells

    Get PDF
    Tumors are defined by their intense proliferation, but sometimes cancer cells turn senescent and stop replicating. In the stochastic cancer model in which all cells are tumorigenic, senescence is seen as the result of random mutations, suggesting that it could represent a barrier to tumor growth. In the hierarchical cancer model a subset of the cells, the cancer stem cells, divide indefinitely while other cells eventually turn senescent. Here we formulate cancer growth in mathematical terms and obtain predictions for the evolution of senescence. We perform experiments in human melanoma cells which are compatible with the hierarchical model and show that senescence is a reversible process controlled by survivin. We conclude that enhancing senescence is unlikely to provide a useful therapeutic strategy to fight cancer, unless the cancer stem cells are specifically targeted

    Histone H4 acetylation by immunohistochemistry and prognosis in newly diagnosed adult acute lymphoblastic leukemia (ALL) patients

    Get PDF
    Background: Histone deacetylase (HDAC) inhibitors are a novel anti-tumor therapy. To determine whether HDAC inhibitors may be useful in the treatment of adult acute lymphoblastic leukemia (ALL), we examined the acetylation of histone H4 by immunohistochemistry in newly diagnosed ALL patients and evaluated the impact of acetylation on complete remission (CR) rate, relapse-free survival (RFS), and overall survival (OS). Methods: Patients >= 18 years of age and an available diagnostic bone marrow biopsy were evaluated. Cox proportional hazards analysis was used to identify univariate and multivariate correlates of CR, RFS, and OS. The variables histone H4 acetylation (positive or negative), white blood count, cytogenetic (CG) risk group (CALGB criteria), and age were used in multivariate analysis. Results: On multivariate analysis, histone acetylation was associated with a trend towards an improved OS (for all CG risk groups) (HR = 0.51, p = 0.09). In patients without poor risk CG, there was an impressive association between the presence of histone acetylation and an improved CR rate (OR 3.43, p = 0.035), RFS (HR 0.07, p = 0.005), and OS (HR 0.24, p = 0.007). This association remained statistically significant in multivariate analysis. Conclusions: These data provide a rationale for the design of novel regimens incorporating HDAC inhibitors in ALL

    Neoplastic transformation of breast epithelial cells by genotoxic stress

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Exposure to genotoxic stresses such as radiation and tobacco smoke can cause increased cancer incidence rate as reflected in an in depth meta-analysis of data for women and breast cancer incidence. Published reports have indicated that exposures to low dose radiation and tobacco smoke are factors that contribute to the development of breast cancer. However, there is a scarcity of information on the combinatorial effects of low dose radiation and tobacco smoke on formation and progression of breast cancer. The combination of these two genotoxic insults can induce significant damage to the genetic material of the cells resulting in neoplastic transformation.</p> <p>Methods</p> <p>To study the effects of low dose ionizing radiation and tobacco smoke on breast cells, MCF 10A cells were treated either with radiation (Rad - 0.1 Gray) or cigarette smoke condensate (Csc - 10 microgram/ml of medium) or a combination of Rad + Csc. Following treatments, cells were analyzed for cell cycle distribution patterns and the ability to extrude the Hoechst 33342 dye. In addition, <it>in vitro </it>invasion and migration as well as mammosphere formation assays were performed. Finally, differential gene expression profiles were generated from the individual and combination treatment.</p> <p>Results</p> <p>Exposure of MCF 10A cells to the combination of radiation plus cigarette smoke condensate generated a neoplastic phenotype. The transformed phenotype promoted increased mammosphere numbers, altered cell cycle phases with a doubling of the population in S phase, and increased invasion and motility. Also, exclusion of Hoechst 33342 dye, a surrogate marker for increased ABC transporters, was observed, which indicates a possible increase in drug resistance. In addition, changes in gene expression include the up regulation of genes encoding proteins involved in metabolic pathways and inflammation.</p> <p>Conclusions</p> <p>The results indicate that when normal breast cells are exposed to low dose radiation in combination with cigarette smoke condensate a phenotype is generated that exhibits traits indicative of neoplastic transformation. More importantly, this is the first study to provide a new insight into a possible etiology for breast cancer formation in individuals exposed to low dose radiation and tobacco smoke.</p

    Detection and Characterization of CD133+ Cancer Stem Cells in Human Solid Tumours

    Get PDF
    Osteosarcoma is the most common primary tumour of bone. Solid tumours are made of heterogeneous cell populations, which display different goals and roles in tumour economy. A rather small cell subset can hold or acquire stem potentials, gaining aggressiveness and increasing expectancy of recurrence. The CD133 antigen is a pentaspan membrane glycoprotein, which has been proposed as a cancer stem cell marker, since it has been previously demonstrated to be capable of identifying a cancer initiating subpopulation in brain, colon, melanoma and other solid tumours. Therefore, our aim was to observe the possible presence of cells expressing the CD133 antigen within solid tumour cell lines of osteosarcoma and, then, understand their biological characteristics and performances.In this study, using SAOS2, MG63 and U2OS, three human sarcoma cell lines isolated from young Caucasian subjects, we were able to identify and characterize, among them, CD133+ cells showing the following features: high proliferation rate, cell cycle detection in a G2\M phase, positivity for Ki-67, and expression of ABCG2 transporters. In addition, at the FACS, we were able to observe the CD133+ cell fraction showing side population profile and forming sphere-clusters in serum-free medium with a high clonogenic efficiency.Taken together, our findings lead to the thought that we can assume that we have identified, for the first time, CD133+ cells within osteosarcoma cell lines, showing many features of cancer stem cells. This can be of rather interest in order to design new therapies against the bone cancer

    Squamous cell cancers contain a side population of stem-like cells that are made chemosensitive by ABC transporter blockade

    Get PDF
    Cancers are a heterogeneous mix of cells, some of which exhibit cancer stem cell-like characteristics including ATP-dependent drug efflux and elevated tumorigenic potential. To determine whether aerodigestive squamous cell carcinomas (SCCs) contain a subpopulation of cancer stem cell-like cells, we performed Hoechst dye efflux assays using four independent cell lines. Results revealed the presence of a rare, drug effluxing stem cell-like side population (SP) of cells within all cell lines tested (SCC-SP cells). These cells resembled previously characterised epithelial stem cells, and SCC-SP cell abundance was positively correlated with overall cellular density and individual cell quiescence. Serial SCC-SP fractionation and passaging increased their relative abundance within the total cell population. Purified SCC-SP cells also exhibited increased clonogenic potential in secondary cultures and enhanced tumorigenicity in vivo. Despite this, SCC-SP cells remained chemotherapeutically sensitive upon ATP-dependent transporter inhibition. Overall, these findings suggest that the existence of ATP transporter-dependent cancer stem-like cells may be relatively common, particularly within established tumours. Future chemotherapeutic strategies should therefore consider coupling identification and targeting of this potential stem cell-like population with standard treatment methodologies

    "A novel in vivo model for the study of human breast cancer metastasis using primary breast tumor-initiating cells from patient biopsies"

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The study of breast cancer metastasis depends on the use of established breast cancer cell lines that do not accurately represent the heterogeneity and complexity of human breast tumors. A tumor model was developed using primary breast tumor-initiating cells isolated from patient core biopsies that would more accurately reflect human breast cancer metastasis.</p> <p>Methods</p> <p>Tumorspheres were isolated under serum-free culture conditions from core biopsies collected from five patients with clinical diagnosis of invasive ductal carcinoma (IDC). Isolated tumorspheres were transplanted into the mammary fat pad of NUDE mice to establish tumorigenicity <it>in vivo</it>. Tumors and metastatic lesions were analyzed by hematoxylin and eosin (H+E) staining and immunohistochemistry (IHC).</p> <p>Results</p> <p>Tumorspheres were successfully isolated from all patient core biopsies, independent of the estrogen receptor Ξ± (ERΞ±)/progesterone receptor (PR)/Her2/neu status or tumor grade. Each tumorsphere was estimated to contain 50-100 cells. Transplantation of 50 tumorspheres (1-5 Γ— 10<sup>3 </sup>cells) in combination with Matrigel into the mammary fat pad of NUDE mice resulted in small, palpable tumors that were sustained up to 12 months post-injection. Tumors were serially transplanted three times by re-isolation of tumorspheres from the tumors and injection into the mammary fat pad of NUDE mice. At 3 months post-injection, micrometastases to the lung, liver, kidneys, brain and femur were detected by measuring content of human chromosome 17. Visible macrometastases were detected in the lung, liver and kidneys by 6 months post-injection. Primary tumors variably expressed cytokeratins, Her2/neu, cytoplasmic E-cadherin, nuclear Ξ² catenin and fibronectin but were negative for ERΞ± and vimentin. In lung and liver metastases, variable redistribution of E-cadherin and Ξ² catenin to the membrane of tumor cells was observed. ERΞ± was re-expressed in lung metastatic cells in two of five samples.</p> <p>Conclusions</p> <p>Tumorspheres isolated under defined culture conditions from patient core biopsies were tumorigenic when transplanted into the mammary fat pad of NUDE mice, and metastasized to multiple mouse organs. Micrometastases in mouse organs demonstrated a dormancy period prior to outgrowth of macrometastases. The development of macrometastases with organ-specific phenotypic distinctions provides a superior model for the investigation of organ-specific effects on metastatic cancer cell survival and growth.</p

    Neuroblastoma Cell Lines Contain Pluripotent Tumor Initiating Cells That Are Susceptible to a Targeted Oncolytic Virus

    Get PDF
    Although disease remission can frequently be achieved for patients with neuroblastoma, relapse is common. The cancer stem cell theory suggests that rare tumorigenic cells, resistant to conventional therapy, are responsible for relapse. If true for neuroblastoma, improved cure rates may only be achieved via identification and therapeutic targeting of the neuroblastoma tumor initiating cell. Based on cues from normal stem cells, evidence for tumor populating progenitor cells has been found in a variety of cancers.Four of eight human neuroblastoma cell lines formed tumorspheres in neural stem cell media, and all contained some cells that expressed neurogenic stem cell markers including CD133, ABCG2, and nestin. Three lines tested could be induced into multi-lineage differentiation. LA-N-5 spheres were further studied and showed a verapamil-sensitive side population, relative resistance to doxorubicin, and CD133+ cells showed increased sphere formation and tumorigenicity. Oncolytic viruses, engineered to be clinically safe by genetic mutation, are emerging as next generation anticancer therapeutics. Because oncolytic viruses circumvent typical drug-resistance mechanisms, they may represent an effective therapy for chemotherapy-resistant tumor initiating cells. A Nestin-targeted oncolytic herpes simplex virus efficiently replicated within and killed neuroblastoma tumor initiating cells preventing their ability to form tumors in athymic nude mice.These results suggest that human neuroblastoma contains tumor initiating cells that may be effectively targeted by an oncolytic virus

    Differences in the Properties and Mirna Expression Profiles between Side Populations from Hepatic Cancer Cells and Normal Liver Cells

    Get PDF
    AIMS: Because hepatic cancer stem cells (HCSCs) are believed to derive from the conversion of hepatic normal stem cells (HNSCs), the identification of the differences that distinguish HCSCs from HNSCs is important. METHODS: The HCC model was established in F344 rats by DEN induction. Using FACS analysis, side population cells from HCC (SP-HCCs) were isolated from the epithelial-like cells of HCC tissues, and the side population cells from normal liver (SP-NLCs) were isolated from syngeneic normal liver cells. The expression of stem cell markers was detected in both freshly isolated and amplified subpopulations. After induction with HGF, the differentiation of each subpopulation was analyzed by detection of early and late liver markers. In vivo, the biological characteristics of SP-HCCs and SP-NLCs were analyzed by repairing injured livers or forming tumors in nude mice. In addition, the expression of miRNAs was examined in both populations by miRNA array and QRT-PCR. RESULTS: SP-NLCs and SP-HCCs were 4.30Β±0.011% and 2.100Β±0.010% of the whole population, respectively. Both SP-NLCs and SP-HCCs displayed greater expression of stem cell markers (CD133 and EpCAM) than NSP-NLCs and NSP-HCCs, respectively (P<0.01), both after fresh isolation and amplification. Upon HGF induction, SP-NLCs generated many ALB positive cells and few CK-7 positive cells, but NSP-NLCs could generate only ALB positive cells. In contrast, SP-HCCs gave rise to only AFP positive cells. As few as 5 Γ— 10⁡ SP-NLCs were capable of repairing liver injury, while the same number of NSP-NLCs could not repair the liver. Furthermore, only 1 Γ— 10⁴ SP-HCCs were necessary to initiate a tumor, while NSP-HCCs could not form a tumor. Compared to SP-NLCs, 68 up-regulated and 10 down-regulated miRNAs were present in SP-HCCs (P<0.01). CONCLUSION: Based on the decisive roles of some miRNAs in the genesis of HCSCs, miRNAs may contribute to the different characteristics that distinguish SP-HCCs from SP-NLCs
    • …
    corecore