48 research outputs found

    Labor Law

    Get PDF

    Peer-Victimization and Mental Health Problems in Adolescents: Are Parental and School Support Protective?

    Get PDF
    The aim of this study was to investigate the frequency and effects of peer-victimization on mental health problems among adolescents. Parental and school support were assumed as protective factors that might interact with one another in acting as buffers for adolescents against the risk of peer-victimization. Besides these protective factors, age and gender were additionally considered as moderating factors. The Social and Health Assessment survey was conducted among 986 students aged 11–18 years in order to assess peer-victimization, risk and protective factors and mental health problems. For mental health problems, the Strengths and Difficulties Questionnaire (SDQ) was used. Effects of peer-victimization on mental health problems were additionally compared with normative SDQ data in order to obtain information about clinically relevant psychopathology in our study sample. Results of this study show that peer-victimization carries a serious risk for mental health problems in adolescents. School support is effective in both male and female adolescents by acting as a buffer against the effect of victimization, and school support gains increasing importance in more senior students. Parental support seems to be protective against maladjustment, especially in peer-victimized girls entering secondary school. Since the effect of peer-victimization can be reduced by parental and school support, educational interventions are of great importance in cases of peer-victimization

    Unopened letters from God: A workbook for individuals and groups

    No full text
    197 p.: app.; 25 c

    Is Humeral Segmental Defect Replacement Device A Stronger Construct than Locked IM Nailing?

    No full text
    Intramedullary (IM) nailing is currently the most common method for treating patients with impending pathologic humeral fractures; however, this treatment is associated with known complications primarily owing to violation of the rotator cuff during insertion. A better option is needed. To determine if a humeral segmental replacement prosthesis would provide a stronger construct compared with an IM nail in this setting, we compared the mechanical properties of these two devices in a cadaver model simulating an impending pathologic fracture. In each of nine matched pairs of fresh human humeri one was randomly selected to undergo a 50% lateral middiaphyseal defect simulating an impending pathologic fracture and subsequent fixation with an IM nail and bone cement. The contralateral humerus underwent fixation using a humeral segmental defect prosthesis. We determined T-scores using DEXA. Each specimen subsequently was tested in torsion to failure. Peak torque and peak rotation at failure were greater for the prosthesis specimens whereas torsional stiffness was greater for the IM nail specimens. We found a linear relationship between peak torque and T-score for each device with the slopes of the lines suggesting the construct with the prosthesis can withstand greater forces than the IM nail and the differences between devices were greater in weaker bones

    Detecting infrared radiation

    No full text
    According to one embodiment, detecting radiation includes receiving a first laser drive field at a cell comprising a medium having a number of states. The first laser drive field has a frequency approximately equivalent to a transition frequency between a first state and a second state. A second laser drive field having a frequency approximately equivalent to a transition frequency between the first state and a third state, and an infrared field having a frequency approximately equivalent to a transition frequency between the third state and a fourth state are received. The medium has a transition between the second state and the third state substantially forbidden to support optimal coherence on the transition between the second state and the third state. The infrared field is upconverted to generate a detectable field having a frequency approximately equivalent to a transition frequency between the second state and the fourth state.U
    corecore