5,894 research outputs found

    Apically Extruded Debris During Removal of Realsealâ„¢ Using Two Re-treatment Rotary Systems

    Get PDF
    Abstract: Aim: The aim of this study was to compare the quantity of the extruded debris during removal of laterally and vertically compacted RealSeal ™ using two NiTi rotary re-treatment systems (ProTaper ® re-treatment & R-Endo ® ) and Hedström files. Method: Eighty four extracted human premolar teeth were prepared using hand K-files with step down technique and randomly assigned into 2 groups (42 roots each) to fill with RealSeal ™ using either cold lateral compaction or warm vertical compaction techniques. Each group was subgrouped into 3 groups and removal of the RealSeal was done by one of the following: Hedström files, ProTaper re-treatment system and R-Endo. Apically extruded debris was collected in pre weighted glass cuvette and the mean of the debris was statistically analyzed using Kruskal-Wallis test and Mann-Whitney test. Result: No significant difference was found between groups regarding obturation technique or type of files used during retreatment P > 0.05. Conclusion: All the above used re-treatment methods were had the same effect on the amount of apically debris during re-treatment

    Output feedback robust H∞ control with D-stability and variance constraints: A parametrization approach

    Get PDF
    This is the post print version of the article. The official published version can be obtained from the link below - Copyright 2005 Springer Ltd.In this paper, we study the problem of robust H∞ controller design for uncertain continuous-time systems with variance and D-stability constraints. The parameter uncertainties are allowed to be unstructured but norm-bounded. The aim of this problem is the design of an output feedback controller such that, for all admissible uncertainties, the closed-loop poles be placed within a specified disk, the H∞ norm bound constraint on the disturbance rejection attenuation be guaranteed, and the steady-state variance for each state of the closed-loop system be no more than the prescribed individual upper bound, simultaneously. A parametric design method is exploited to solve the problem addressed. Sufficient conditions for the existence of the desired controllers are derived by using the generalized inverse theory. The analytical expression of the set of desired controllers is also presented. It is shown that the obtained results can be readily extended to the dynamic output feedback case and the discrete-time case

    Quasienergy spectra of a charged particle in planar honeycomb lattices

    Full text link
    The low energy spectrum of a particle in planar honeycomb lattices is conical, which leads to the unusual electronic properties of graphene. In this letter we calculate the quasienergy spectra of a charged particle in honeycomb lattices driven by a strong AC field, which is of fundamental importance for its time-dependent dynamics. We find that depending on the amplitude, direction and frequency of external field, many interesting phenomena may occur, including band collapse, renormalization of velocity of ``light'', gap opening etc.. Under suitable conditions, with increasing the magnitude of the AC field, a series of phase transitions from gapless phases to gapped phases appear alternatively. At the same time, the Dirac points may disappear or change to a line. We suggest possible realization of the system in Honeycomb optical lattices.Comment: 4+ pages, 5 figure

    Fine structure of the isoscalar giant quadrupole resonance in 40Ca due to Landau damping?

    Full text link
    The fragmentation of the Isoscalar Giant Quadrupole Resonance (ISGQR) in 40Ca has been investigated in high energy-resolution experiments using proton inelastic scattering at E_p = 200 MeV. Fine structure is observed in the region of the ISGQR and its characteristic energy scales are extracted from the experimental data by means of a wavelet analysis. The experimental scales are well described by Random Phase Approximation (RPA) and second-RPA calculations with an effective interaction derived from a realistic nucleon-nucleon interaction by the Unitary Correlation Operator Method (UCOM). In these results characteristic scales are already present at the mean-field level pointing to their origination in Landau damping, in contrast to the findings in heavier nuclei and also to SRPA calculations for 40Ca based on phenomenological effective interactions, where fine structure is explained by the coupling to two-particle two-hole (2p-2h) states.Comment: Phys. Lett. B, in pres

    Relativistic quantum effects of Dirac particles simulated by ultracold atoms

    Full text link
    Quantum simulation is a powerful tool to study a variety of problems in physics, ranging from high-energy physics to condensed-matter physics. In this article, we review the recent theoretical and experimental progress in quantum simulation of Dirac equation with tunable parameters by using ultracold neutral atoms trapped in optical lattices or subject to light-induced synthetic gauge fields. The effective theories for the quasiparticles become relativistic under certain conditions in these systems, making them ideal platforms for studying the exotic relativistic effects. We focus on the realization of one, two, and three dimensional Dirac equations as well as the detection of some relativistic effects, including particularly the well-known Zitterbewegung effect and Klein tunneling. The realization of quantum anomalous Hall effects is also briefly discussed.Comment: 22 pages, review article in Frontiers of Physics: Proceedings on Quantum Dynamics of Ultracold Atom

    Computational exploration of molecular receptive fields in the olfactory bulb reveals a glomerulus-centric chemical map

    Get PDF
    © The Author(s) 2020. This article is licensed under a Creative Commons Attribution 4.0 International License. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.Progress in olfactory research is currently hampered by incomplete knowledge about chemical receptive ranges of primary receptors. Moreover, the chemical logic underlying the arrangement of computational units in the olfactory bulb has still not been resolved. We undertook a large-scale approach at characterising molecular receptive ranges (MRRs) of glomeruli in the dorsal olfactory bulb (dOB) innervated by the MOR18-2 olfactory receptor, also known as Olfr78, with human ortholog OR51E2. Guided by an iterative approach that combined biological screening and machine learning, we selected 214 odorants to characterise the response of MOR18-2 and its neighbouring glomeruli. We found that a combination of conventional physico-chemical and vibrational molecular descriptors performed best in predicting glomerular responses using nonlinear Support-Vector Regression. We also discovered several previously unknown odorants activating MOR18-2 glomeruli, and obtained detailed MRRs of MOR18-2 glomeruli and their neighbours. Our results confirm earlier findings that demonstrated tunotopy, that is, glomeruli with similar tuning curves tend to be located in spatial proximity in the dOB. In addition, our results indicate chemotopy, that is, a preference for glomeruli with similar physico-chemical MRR descriptions being located in spatial proximity. Together, these findings suggest the existence of a partial chemical map underlying glomerular arrangement in the dOB. Our methodology that combines machine learning and physiological measurements lights the way towards future high-throughput studies to deorphanise and characterise structure-activity relationships in olfaction.Peer reviewe

    Application of the density dependent hadron field theory to neutron star matter

    Get PDF
    The density dependent hadron field (DDRH) theory, previously applied to isospin nuclei and hypernuclei is used to describe β\beta-stable matter and neutron stars under consideration of the complete baryon octet. The meson-hyperon vertices are derived from Dirac-Brueckner calculations of nuclear matter and extended to hyperons. We examine properties of density dependent interactions derived from the Bonn A and from the Groningen NN potential as well as phenomenological interactions. The consistent treatment of the density dependence introduces rearrangement terms in the expression for the baryon chemical potential. This leads to a more complex condition for the β\beta-equilibrium compared to standard relativistic mean field (RMF) approaches. We find a strong dependence of the equation of state and the particle distribution on the choice of the vertex density dependence. Results for neutron star masses and radii are presented. We find a good agreement with other models for the maximum mass. Radii are smaller compared to RMF models and indicate a closer agreement with results of non-relativistic Brueckner calculations.Comment: 28 pages, 11 figure
    • …
    corecore