289 research outputs found

    Universal lineshape of the Kondo zero-bias anomaly in a quantum dot

    Full text link
    Encouraged by the recent real-time renormalization group results we carried out a detailed analysis of the nonequilibrium Kondo conductance observed in an InAs nanowire-based quantum dot and found them to be in excellent agreement. We show that in a wide range of bias the Kondo conductance zero-bias anomaly is scaled by the Kondo temperature to a universal lineshape predicted by the numerical study. The lineshape can be approximated by a phenomenological expression of a single argument eVsd=kBTKeV_{sd}=k_{\rm B}T_{\rm K}. The knowledge of an analytical expression for the lineshape provides an alternative way for estimation of the Kondo temperature in a real experiment, with no need for time consuming temperature dependence measurements of the linear conductance.Comment: 5 pages, 3 figure

    Tree extraction and estimation of walnut structure parameters using airborne LiDAR data

    Full text link
    [EN] The development of new tools based on remote sensing data in agriculture contributes to cost reduction, increased production, and greater profitability. Airborne LiDAR (Light Detection and Ranging) data show a significant potential for geometrically characterizing tree plantations. This study aims to develop a methodology to extract walnut (Juglans regia L.) crowns under leafless conditions using airborne LiDAR data. An original approach based on the alpha-shape algorithm, identification of local maxima, and k-means algorithms is developed to extract the crowns of walnut trees in a plot located in Viver (Eastern Spain) with 192 trees. In addition, stem diameter and volume, crown diameter, total height, and crown height were estimated from cloud metrics and other 2D parameters such as crown area, and diameter derived from LiDAR data. A correct identification was made of 178 trees (92.7%). For structure parameters, the most accurate results were obtained for crown diameter, stem diameter, and stem volume with coefficient of determination values (R-2) equal to 0.95, 0.87 and 0.83; and RMSE values of 0.43 m (5.70%), 0.02 m (9.35%) and 0.016 m(3) (21.55%), respectively. The models that gave the lowest R-2 values were 0.69 for total height and 0.70 for crown height, with RMSE values of 0.84 m (12.4%) and 0.83 m (14.5%), respectively. A suitable definition of the central and lower parts of tree canopies was observed. Results of this study generate valuable information, which can be applied for improving the management of walnut plantations.Estornell Cremades, J.; Hadas, E.; Marti-Gavila, J.; López- Cortés, I. (2021). Tree extraction and estimation of walnut structure parameters using airborne LiDAR data. International Journal of Applied Earth Observation and Geoinformation. 96:1-9. https://doi.org/10.1016/j.jag.2020.102273S199

    Pseudospin-Resolved Transport Spectroscopy of the Kondo Effect in a Double Quantum Dot

    Full text link
    We report measurements of the Kondo effect in a double quantum dot (DQD), where the orbital states act as pseudospin states whose degeneracy contributes to Kondo screening. Standard transport spectroscopy as a function of the bias voltage on both dots shows a zero-bias peak in conductance, analogous to that observed for spin Kondo in single dots. Breaking the orbital degeneracy splits the Kondo resonance in the tunneling density of states above and below the Fermi energy of the leads, with the resonances having different pseudospin character. Using pseudospin-resolved spectroscopy, we demonstrate the pseudospin character by observing a Kondo peak at only one sign of the bias voltage. We show that even when the pseudospin states have very different tunnel rates to the leads, a Kondo temperature can be consistently defined for the DQD system.Comment: Text and supplementary information. Text: 4 pages, 5 figures. Supplementary information: 4 pages, 4 figure

    Modulation of functional network properties in major depressive disorder following electroconvulsive therapy (ECT): a resting-state EEG analysis

    Full text link
    Electroconvulsive therapy (ECT) is a highly effective neuromodulatory intervention for treatment-resistant major depressive disorder (MDD). Presently, however, understanding of its neurophysiological effects remains incomplete. In the present study, we utilised resting-state electroencephalography (RS-EEG) to explore changes in functional connectivity, network topology, and spectral power elicited by an acute open-label course of ECT in a cohort of 23 patients with treatment-resistant MDD. RS-EEG was recorded prior to commencement of ECT and again within 48 h following each patient’s final treatment session. Our results show that ECT was able to enhance connectivity within lower (delta and theta) frequency bands across subnetworks largely confined to fronto-central channels, while, conversely, more widespread subnetworks of reduced connectivity emerged within faster (alpha and beta) bands following treatment. Graph-based topological analyses revealed changes in measures of functional segregation (clustering coefficient), integration (characteristic path length), and small-world architecture following ECT. Finally, post-treatment enhancement of delta and theta spectral power was observed, which showed a positive association with the number of ECT sessions received. Overall, our findings indicate that RS-EEG can provide a sensitive measure of dynamic neural activity following ECT and highlight network-based analyses as a promising avenue for furthering mechanistic understanding of the effects of convulsive therapies

    Formation of microtubule-based traps controls the sorting and concentration of vesicles to restricted sites of regenerating neurons after axotomy

    Get PDF
    Transformation of a transected axonal tip into a growth cone (GC) is a critical step in the cascade leading to neuronal regeneration. Critical to the regrowth is the supply and concentration of vesicles at restricted sites along the cut axon. The mechanisms underlying these processes are largely unknown. Using online confocal imaging of transected, cultured Aplysia californica neurons, we report that axotomy leads to reorientation of the microtubule (MT) polarities and formation of two distinct MT-based vesicle traps at the cut axonal end. Approximately 100 μm proximal to the cut end, a selective trap for anterogradely transported vesicles is formed, which is the plus end trap. Distally, a minus end trap is formed that exclusively captures retrogradely transported vesicles. The concentration of anterogradely transported vesicles in the former trap optimizes the formation of a GC after axotomy

    Weak-Values Technique for Velocity Measurements

    Get PDF
    In a recent Letter, Brunner and Simon proposed an interferometric scheme using imaginary weak values with a frequency-domain analysis to outperform standard interferometry in longitudinal phase shifts [Phys. Rev. Lett 105, 010405 (2010)]. Here we demonstrate an interferometric scheme combined with a time-domain analysis to measure longitudinal velocities. The technique employs the near-destructive interference of non-Fourier limited pulses, one Doppler shifted due to a moving mirror in a Michelson interferometer. We achieve a velocity measurement of 400  fm/s and show our estimator to be efficient by reaching its Cramér–Rao bound
    • …
    corecore