86 research outputs found

    DER FLIEGENPALAST BY WALTER KAPPACHER. A HOMAGE TO HUGO VON HOFMANNSTHAL BY EXAMINING “AUSTRIANNESS”

    Get PDF
    Der Hofmannsthalkenner und -verehrer Walter Kappacher hat fĂŒr seinen Roman Der Fliegenpalast (2009) auf seine fundierten Kenntnisse des Hofmannsthalschen OEuvres zurĂŒckgegriffen und umfangreiche Recherchen zum Autor und zu seiner Zeit angestellt. Daraus entstand ein dichtes Geflecht von intertextuellen BezĂŒgen sowohl zu Werken von Hofmannsthal als auch zu dessen LektĂŒre, in das Kappacher ein breites kultur- und sozialgeschichtliches Panorama der ersten Jahrzehnte des vergangenen Jahrhunderts in Österreich verwob. Die Analyse der Konstruktion dieser scheinbar so selbstverstĂ€ndlich österreichischen Referenzen belegt, dass der Roman nur im Kontext der österreichischen Historie, sowie der österreichischen Literatur- und Kulturgeschichte adĂ€quat analysiert und interpretiert werden kann.In his novel Der Fliegenpalast, Walter Kappacher, an expert on and admirer of Hugo von Hofmannsthal, drew on his profound knowledge of Hofmannsthal’s work, as well as researching extensively on the author and his time. This resulted in a dense fabric of intertextual references to both Hofmannsthal’s work and his reading. Interwoven with this biographical narration is a broad socio-historic panorama of the first decades of the 20th century in Austria. An analysis of the construction of seemingly self-evident Austrian references proves that this novel can only be adequately analyzed and interpreted in the context of Austrian political as well as literary and cultural history.In his novel Der Fliegenpalast, Walter Kappacher, an expert on and admirer of Hugo von Hofmannsthal, drew on his profound knowledge of Hofmannsthal’s work, as well as researching extensively on the author and his time. This resulted in a dense fabric of intertextual references to both Hofmannsthal’s work and his reading. Interwoven with this biographical narration is a broad socio-historic panorama of the first decades of the 20th century in Austria. An analysis of the construction of seemingly self-evident Austrian references proves that this novel can only be adequately analyzed and interpreted in the context of Austrian political as well as literary and cultural history

    Parameterisation of a Maxwell model for transient tyre force by means of an extended firefly algorithm

    Get PDF
    Developing functions for advanced driver assistance systems requires very accurate tyre models, especially for the simulation of transient conditions. In the past, parametrisation of a given tyre model based on measurement data showed shortcomings, and the globally optimal solution obtained did not appear to be plausible. In this article, an optimisation strategy is presented, which is able to find plausible and physically feasible solutions by detecting many local outcomes. The firefly algorithm mimics the natural behaviour of fireflies, which use a kind of flashing light to communicate with other members. An algorithm simulating the intensity of the light of a single firefly, diminishing with increasing distances, is implicitly able to detect local solutions on its way to the best solution in the search space. This implicit clustering feature is stressed by an additional explicit clustering step, where local solutions are stored and terminally processed to obtain a large number of possible solutions. The enhanced firefly algorithm will be first applied to the well-known Rastrigin functions and then to the tyre parametrisation problem. It is shown that the firefly algorithm is qualified to find a high number of optimisation solutions, which is required for plausible parametrisation for the given tyre model

    NVP-BEZ235 and NVP-BGT226, dual phosphatidylinositol 3-kinase/mammalian target of rapamycin inhibitors, enhance tumor and endothelial cell radiosensitivity

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The phosphatidylinositol 3-kinase (PI3K)/Akt pathway is activated in tumor cells and promotes tumor cell survival after radiation-induced DNA damage. Because the pathway may not be completely inhibited after blockade of PI3K itself, due to feedback through mammalian target of rapamycin (mTOR), more effective inhibition might be expected by targeting both PI3K and mTOR inhibition.</p> <p>Materials and methods</p> <p>We investigated the effect of two dual PI3K/mTOR (both mTORC1 and mTORC2) inhibitors, NVP-BEZ235 and NVP-BGT226, on SQ20B laryngeal and FaDu hypopharyngeal cancer cells characterised by EGFR overexpression, on T24 bladder tumor cell lines with H-Ras mutation and on endothelial cells. Analysis of target protein phosphorylation, clonogenic survival, number of residual ÎłH2AX foci, cell cycle and apoptosis after radiation was performed in both tumor and endothelial cells. In vitro angiogenesis assays were conducted as well.</p> <p>Results</p> <p>Both compounds effectively inhibited phosphorylation of Akt, mTOR and S6 target proteins and reduced clonogenic survival in irradiated tumor cells. Persistence of DNA damage, as evidenced by increased number of ÎłH2AX foci, was detected after irradiation in the presence of PI3K/mTOR inhibition, together with enhanced G2 cell cycle delay. Treatment with one of the inhibitors, NVP-BEZ235, also resulted in decreased clonogenicity after irradiation of tumor cells under hypoxic conditions. In addition, NVP-BEZ235 blocked VEGF- and IR-induced Akt phosphorylation and increased radiation killing in human umbilical venous endothelial cells (HUVEC) and human dermal microvascular dermal cells (HDMVC). NVP-BEZ235 inhibited VEGF-induced cell migration and capillary tube formation in vitro and enhanced the antivascular effect of irradiation. Treatment with NVP-BEZ235 moderately increased apoptosis in SQ20B and HUVEC cells but not in FaDu cells, and increased necrosis in both tumor and endothelial all cells tumor.</p> <p>Conclusions</p> <p>The results of this study demonstrate that PI3K/mTOR inhibitors can enhance radiation-induced killing in tumor and endothelial cells and may be of benefit when combined with radiotherapy.</p

    Seasonal variations in the diagnosis of testicular germ cell tumors: a national cancer registry study in austria

    Get PDF
    SIMPLE SUMMARY: Seasonal variations in cancer diagnosis could already be demonstrated in prostate and breast cancer. The reasons for this observed seasonal pattern are still unclear. The health care system or other determinants such as the protective function of vitamin D3 in carcinogenesis could be assumed as one explanation. Testicular germ cell tumors are the most common developed malignancy among young men. The aim of our study was to investigate, for the first time, the seasonal variations in the clinical diagnosis of testicular germ cell tumors. We have been able to confirm that the frequency of monthly newly diagnosed cases of testicular cell tumors in Austria has a strong seasonality, with a significant reduction in the tumor incidence during the summer months and an increase during the winter months. ABSTRACT: We conducted a retrospective National Cancer Registry study in Austria to assess a possible seasonal variation in the clinical diagnosis of testicular germ cell tumors (TGCT). In total, 3615 testicular cancer diagnoses were identified during an 11-year period from 2008 to 2018. Rate ratios for the monthly number of TGCT diagnoses, as well as of seasons and half-years, were assessed using a quasi-Poisson model. We identified, for the first time, a statistically significant seasonal trend (p < 0.001) in the frequency of monthly newly diagnosed cases of TGCT. In detail, clear seasonal variations with a reduction in the tumor incidence during the summer months (Apr–Sep) and an increase during the winter months (Oct–Mar) were observed (p < 0.001). Focusing on seasonality, the incidence during the months of Oct–Dec (p = 0.008) and Jan–Mar (p < 0.001) was significantly higher compared to the months of Jul–Sep, respectively. Regarding histopathological features, there is a predominating incidence in the winter months compared to summer months, mainly concerning pure seminomas (p < 0.001), but not the non-seminoma or mixed TGCT groups. In conclusion, the incidence of TGCT diagnoses in Austria has a strong seasonal pattern, with the highest rate during the winter months. These findings may be explained by a delay of self-referral during the summer months. However, the hypothetical influence of vitamin D3 in testicular carcinogenesis underlying seasonal changes in TGCT diagnosis should be the focus of further research

    KCNJ3 is a new independent prognostic marker for estrogen receptor positive breast cancer patients

    Get PDF
    Numerous studies showed abnormal expression of ion channels in different cancer types. Amongst these, the potassium channel gene KCNJ3 (encoding for GIRK1 proteins) has been reported to be upregulated in tumors of patients with breast cancer and to correlate with positive lymph node status. We aimed to study KCNJ3 levels in different breast cancer subtypes using gene expression data from the TCGA, to validate our findings using RNA in situ hybridization in a validation cohort (GEO ID GSE17705), and to study the prognostic value of KCNJ3 using survival analysis. In a total of > 1000 breast cancer patients of two independent data sets we showed a) that KCNJ3 expression is upregulated in tumor tissue compared to corresponding normal tissue (p < 0.001), b) that KCNJ3 expression is associated with estrogen receptor (ER) positive tumors (p < 0.001), but that KCNJ3 expression is variable within this group, and c) that ER positive patients with high KCNJ3 levels have worse overall (p < 0.05) and disease free survival probabilities (p < 0.01), whereby KCNJ3 is an independent prognostic factor (p <0.05). In conclusion, our data suggest that patients with ER positive breast cancer might be stratified into high risk and low risk groups based on the KCNJ3 levels in the tumor

    Clinical Efficacy of a Novel Therapeutic Principle, Anakoinosis

    Get PDF
    Classic tumor therapy, consisting of cytotoxic agents and/or targeted therapy, has not overcome therapeutic limitations like poor risk genetic parameters, genetic heterogeneity at different metastatic sites or the problem of undruggable targets. Here we summarize data and trials principally following a completely different treatment concept tackling systems biologic processes: the principle of communicative reprogramming of tumor tissues, i.e., anakoinosis(ancient greek for communication), aims at establishing novel communicative behavior of tumor tissue, the hosting organ and organism via re-modeling gene expression, thus recovering differentiation, and apoptosis competence leading to cancer control – in contrast to an immediate, “poisoning” with maximal tolerable doses of targeted or cytotoxic therapies. Therefore, we introduce the term “Master modulators” for drugs or drug combinations promoting evolutionary processes or regulating homeostatic pathways. These “master modulators” comprise a broad diversity of drugs, characterized by the capacity for reprogramming tumor tissues, i.e., transcriptional modulators, metronomic low-dose chemotherapy, epigenetically modifying agents, protein binding pro-anakoinotic drugs, such as COX-2 inhibitors, IMiDs etc., or for example differentiation inducing therapies. Data on 97 anakoinosis inducing schedules indicate a favorable toxicity profile: The combined administration of master modulators, frequently (with poor or no monoactivity) may even induce continuous complete remission in refractory metastatic neoplasia, irrespectively of the tumor type. That means recessive components of the tumor, successively developing during tumor ontogenesis, are accessible by regulatory active drug combinations in a therapeutically meaningful way. Drug selection is now dependent on situative systems characteristics, to less extent histology dependent. To sum up, anakoinosis represents a new substantive therapy principle besides novel targeted therapies

    Phenotypic and transcriptomic analyses of seven clinical Stenotrophomonas maltophilia isolates identify a small set of shared and commonly regulated genes involved in the biofilm lifestyle

    Get PDF
    Stenotrophomonas maltophilia is one of the most frequently isolated multidrug-resistant nosocomial opportunistic pathogens. It contributes to disease progression in cystic fibrosis (CF) patients and is frequently isolated from wounds, infected tissues, and catheter surfaces. On these diverse surfaces S. maltophilia lives in single-species or multispecies biofilms. Since very little is known about common processes in biofilms of different S. maltophilia isolates, we analyzed the biofilm profiles of 300 clinical and environmental isolates from Europe of the recently identified main lineages Sgn3, Sgn4, and Sm2 to Sm18. The analysis of the biofilm architecture of 40 clinical isolates revealed the presence of multicellular structures and high phenotypic variability at a strain-specific level. Further, transcriptome analyses of biofilm cells of seven clinical isolates identified a set of 106 shared strongly expressed genes and 33 strain-specifically expressed genes. Surprisingly, the transcriptome profiles of biofilm versus planktonic cells revealed that just 9.43% ± 1.36% of all genes were differentially regulated. This implies that just a small set of shared and commonly regulated genes is involved in the biofilm lifestyle. Strikingly, iron uptake appears to be a key factor involved in this metabolic shift. Further, metabolic analyses implied that S. maltophilia employs a mostly fermentative growth mode under biofilm conditions. The transcriptome data of this study together with the phenotypic and metabolic analyses represent so far the largest data set on S. maltophilia biofilm versus planktonic cells. This study will lay the foundation for the identification of strategies for fighting S. maltophilia biofilms in clinical and industrial settings. IMPORTANCE Microorganisms living in a biofilm are much more tolerant to antibiotics and antimicrobial substances than planktonic cells are. Thus, the treatment of infections caused by microorganisms living in biofilms is extremely difficult. Nosocomial infections (among others) caused by S. maltophilia, particularly lung infection among CF patients, have increased in prevalence in recent years. The intrinsic multidrug resistance of S. maltophilia and the increased tolerance to antimicrobial agents of its biofilm cells make the treatment of S. maltophilia infection difficult. The significance of our research is based on understanding the common mechanisms involved in biofilm formation of different S. maltophilia isolates, understanding the diversity of biofilm architectures among strains of this species, and identifying the differently regulated processes in biofilm versus planktonic cells. These results will lay the foundation for the treatment of S. maltophilia biofilms
    • 

    corecore