97 research outputs found
American Mastodon Mitochondrial Genomes Suggest Multiple Dispersal Events in Response to Pleistocene Climate Oscillations
Pleistocene glacial-interglacial cycles are correlated with dramatic temperature oscillations. Examining how species responded to these natural fluctuations can provide valuable insights into the impacts of present-day anthropogenic climate change. Here we present a phylogeographic study of the extinct American mastodon (Mammut americanum), based on 35 complete mitochondrial genomes. These data reveal the presence of multiple lineages within this species, including two distinct clades from eastern Beringia. Our molecular date estimates suggest that these clades arose at different times, supporting a pattern of repeated northern expansion and local extirpation in response to glacial cycling. Consistent with this hypothesis, we also note lower levels of genetic diversity among northern mastodons than in endemic clades south of the continental ice sheets. The results of our study highlight the complex relationships between population dispersals and climate change, and can provide testable hypotheses for extant species expected to experience substantial biogeographic impacts from rising temperatures
Bioaccumulation and Toxicity of Organic Chemicals in Terrestrial Invertebrates
Terrestrial invertebrates are key components in ecosystems, with crucial roles in soil structure, functioning, and ecosystem services. The present chapter covers how terrestrial invertebrates are impacted by organic chemicals, focusing on up-to-date information regarding bioavailability, exposure routes and general concepts on bioaccumulation, toxicity, and existing models. Terrestrial invertebrates are exposed to organic chemicals through different routes, which are dependent on both the organismal traits and nature of exposure, including chemical properties and media characteristics. Bioaccumulation and toxicity data for several groups of organic chemicals are presented and discussed, attempting to cover plant protection products (herbicides, insecticides, fungicides, and molluscicides), veterinary and human pharmaceuticals, polycyclic aromatic compounds, polychlorinated biphenyls, flame retardants, and personal care products. Chemical mixtures are also discussed bearing in mind that chemicals appear simultaneously in the environment. The biomagnification of organic chemicals is considered in light of the consumption of terrestrial invertebrates as novel feed and food sources. This chapter highlights how science has contributed with data from the last 5Â years, providing evidence on bioavailability, bioaccumulation, and toxicity derived from exposure to organic chemicals, including insights into the main challenges and shortcomings to extrapolate results to real exposure scenarios
Rescue recovery of the earliest known burials from Barbuda, West Indies (ca. 3560–3220 cal years BP)
The majority of archaeological sites in the Caribbean are under threat from various natural and cultural processes. This is particularly true for the smaller and more vulnerable islands in the Lesser Antilles. Here we report on the 2001 rescue recovery of human skeletal remains that were observed to be actively eroding into the sea at Boiling Rock, an Archaic Age site along the southeast coast of Barbuda. Analysis of the remains, representing three individuals, included an osteological inventory, stable isotope analysis to infer paleodiet, and direct radiocarbon dating. While excavation and recording were expedited due to the need for salvaging the skeletal remains and associated archaeological material, the results are an important contribution to the early stages of settlement on the island. This includes adding to the inventory of known Archaic Age sites on Barbuda (from six to seven), providing the only directly dated Archaic individual on the island going back to 3560–3220 cal years BP, isotopic analysis revealing a reliance on endemic marine protein and terrestrial C3 carbohydrates, and the description of grave goods, which is generally rare for burials of this age
Cell-Permeable Nanobodies Allow Dual-Color Super-Resolution Microscopy in Untransfected Living Cells
Super-resolution microscopy in living cells can be restricted by the availability of small molecule probes, which only exist against few targets and genetically encoded tags. Here, we expand the applicability of live-cell STED by engineering cell-permeable and highly fluorescent nanobodies as intracellular targeting agents. To ensure bright fluorescent signals at low concentrations we used the concept of intramolecular photostabilization by ligating a fluorophore along with the photostabilizer trolox to the nanobody using expressed protein ligation (EPL). Furthermore, these semi-synthetic nanobodies are equipped with a cleavable cell-penetrating peptide for efficient cellular entry, which enables super-resolution imaging of GFP and mCherry, as well as two endogenous targets, nuclear lamins and the DNA replication and repair protein PCNA. We monitored cell division and DNA replication via confocal and STED microscopy thus demonstrating the utility of these new intracellular tools for functional analysis
- …