3,129 research outputs found
The Electrochemical Oxidation of Organic Selenides and Selenoxides
The electrochemical oxidation of alkyl and aryl selenides was investigated in acetonitrile. The oxidation of diphenyl selenide and di(4‐methylphenyl) selenide led primarily to the formation of their respective selenoxides, which were identified by exhaustive coulometric oxidation and and analysis of the products. The selenoxide itself was not observed in the cyclic voltammetry of the selenide for two reasons: first, the protonation of the selenoxide by the acid formed from the reaction of water with the cation radical and second, the formation of a selenoxide hydrate. The formation of the hydrate with diphenyl selenoxide was verified by isolation of the dimethoxy derivative. In addition to the selenoxide, selenonium compounds, formed by the coupling of the oxidized material, were also observed. The alkyl selenides were generally oxidized at a lower potential than the aryl selenides. This trend is different from the sulfur analogues, where the aryl sulfides are easier to oxidize than their alkyl counterparts. As a result, the difference in their redox potentials is relatively small. These differences may occur because the oxidation of aryl sulfides is more likely to take place on the aromatic ring, which leads to a greater yield of the coupled products (about 100%) when compared to the selenide analogue
The Intrinsic Absorber in QSO 2359-1241: Keck and HST Observations
We present detailed analyses of the absorption spectrum seen in QSO 2359-1241
(NVSS J235953-124148). Keck HIRES data reveal absorption from twenty
transitions arising from: He I, Mg I, Mg II, Ca II, and Fe II. HST data show
broad absorption lines (BALs) from Al III 1857, C IV 1549, Si IV 1397, and N V
1240. Absorption from excited Fe II states constrains the temperature of the
absorber to 2000K < T < 10,000K and puts a lower limit of 10^5 cm^{-3} on the
electron number density. Saturation diagnostics show that the real column
densities of He I and Fe II can be determined, allowing to derive meaningful
constraints on the ionization equilibrium and abundances in the flow. The
ionization parameter is constrained by the iron, helium and magnesium data to
-3.0 < log(U) < -2.5 and the observed column densities can be reproduced
without assuming departure from solar abundances. From comparison of the He I
and Fe II absorption features we infer that the outflow seen in QSO 2359-1241
is not shielded by a hydrogen ionization front and therefore that the existence
of low-ionization species in the outflow (e.g., Mg II, Al III, Fe II) does not
necessitate the existence of such a front. We find that the velocity width of
the absorption systematically increases as a function of ionization and to a
lesser extent with abundance. Complementary analyses of the radio and
polarization properties of the object are discussed in a companion paper
(Brotherton et al. 2000).Comment: 30 pages, 9 figures, in press with the Ap
Characterization of CFRP mode I and mode II cohesive element parameters for 0//0 and +45//-45 interfaces
Taming the Invisible Monster: System Parameter Constraints for Epsilon Aurigae from the Far-Ultraviolet to the Mid-Infrared
We have assembled new Spitzer Space Telescope Infrared Array Camera
observations of the mysterious binary star Epsilon Aurigae, along with archival
far-ultraviolet to mid-infrared data, to form an unprecedented spectral energy
distribution spanning three orders of magnitude in wavelength from 0.1 microns
to 100 microns. The observed spectral energy distribution can be reproduced
using a three component model consisting of a 2.2+0.9/-0.8 Msun F type
post-asymptotic giant branch star, and a 5.9+/-0.8 Msun B5+/-1 type main
sequence star that is surrounded by a geometrically thick, but partially
transparent, disk of gas and dust. At the nominal HIPPARCOS parallax distance
of 625 pc, the model normalization yields a radius of 135+/-5 Rsun for the F
star, consistent with published interferometric observations. The dusty disk is
constrained to be viewed at an inclination of i > 87 deg, and has effective
temperature of 550+/-50 K with an outer radius of 3.8 AU and a thickness of
0.95 AU. The dust content of the disk must be largely confined to grains larger
than ~10 microns in order to produce the observed gray optical-infrared
eclipses and the lack of broad dust emission features in the archival Spitzer
mid-infrared spectra. The total mass of the disk, even considering a potential
gaseous contribution in addition to the dust that produces the observed
infrared excess, is << 1 Msun. We discuss evolutionary scenarios for this
system that could lead to the current status of the stellar components and
suggests possibilities for its future evolution, as well as potential
observational tests of our model.Comment: 13 pages, 3 figures. Accepted for publication in The Astrophysical
Journal
An Analytical and Numerical Study of Optimal Channel Networks
We analyze the Optimal Channel Network model for river networks using both
analytical and numerical approaches. This is a lattice model in which a
functional describing the dissipated energy is introduced and minimized in
order to find the optimal configurations. The fractal character of river
networks is reflected in the power law behaviour of various quantities
characterising the morphology of the basin. In the context of a finite size
scaling Ansatz, the exponents describing the power law behaviour are calculated
exactly and show mean field behaviour, except for two limiting values of a
parameter characterizing the dissipated energy, for which the system belongs to
different universality classes. Two modified versions of the model,
incorporating quenched disorder are considered: the first simulates
heterogeneities in the local properties of the soil, the second considers the
effects of a non-uniform rainfall. In the region of mean field behaviour, the
model is shown to be robust to both kinds of perturbations. In the two limiting
cases the random rainfall is still irrelevant, whereas the heterogeneity in the
soil properties leads to new universality classes. Results of a numerical
analysis of the model are reported that confirm and complement the theoretical
analysis of the global minimum. The statistics of the local minima are found to
more strongly resemble observational data on real rivers.Comment: 27 pages, ps-file, 11 Postscript figure
Geometry of River Networks II: Distributions of Component Size and Number
The structure of a river network may be seen as a discrete set of nested
sub-networks built out of individual stream segments. These network components
are assigned an integral stream order via a hierarchical and discrete ordering
method. Exponential relationships, known as Horton's laws, between stream order
and ensemble-averaged quantities pertaining to network components are observed.
We extend these observations to incorporate fluctuations and all higher moments
by developing functional relationships between distributions. The relationships
determined are drawn from a combination of theoretical analysis, analysis of
real river networks including the Mississippi, Amazon and Nile, and numerical
simulations on a model of directed, random networks. Underlying distributions
of stream segment lengths are identified as exponential. Combinations of these
distributions form single-humped distributions with exponential tails, the sums
of which are in turn shown to give power law distributions of stream lengths.
Distributions of basin area and stream segment frequency are also addressed.
The calculations identify a single length-scale as a measure of size
fluctuations in network components. This article is the second in a series of
three addressing the geometry of river networks.Comment: 16 pages, 13 figures, 4 tables, Revtex4, submitted to PR
Prognostic impact of systemic inflammatory diseases in elderly patients with congestive heart failure
Background and aims: Inflammation is part of the pathophysiology of congestive heart failure (CHF). However, little is known about the impact of the presence of systemic inflammatory disease (SID), defined as inflammatory syndrome with constitutional symptoms and involvement of at least two organs as co-morbidity on the clinical course and prognosis of patients with CHF. Methods and results: This is an analysis of all 622 patients included in TIME-CHF. After an 18 months follow-up, outcomes of patients with and without SID were compared. Primary endpoint was all-cause hospitalization free survival. Secondary endpoints were overall survival and CHF hospitalization free survival. At baseline, 38 patients had history of SID (6.1%). These patients had higher N-terminal pro brain natriuretic peptide and worse renal function than patients without SID. SID was a risk factor for adverse outcome [primary endpoint: hazard ratio (HR) = 1.73 (95% confidence interval: 1.18-2.55, P = 0.005); survival: HR = 2.60 (1.49-4.55, P = 0.001); CHF hospitalization free survival: HR = 2.3 (1.45-3.65, P < 0.001)]. In multivariate models, SID remained the strongest independent risk factor for survival and CHF hospitalization free survival. Conclusions: In elderly patients with CHF, SID is independently accompanied with adverse outcome. Given the increasing prevalence of SID in the elderly population, these findings are clinically important for both risk stratification and patient managemen
A progressive damage fatigue model for unidirectional laminated composites based on Finite Element Analysis: Theory and Practice
- …
