299 research outputs found

    Increased PAI-1 plasma levels and risk of death from dengue: no association with the 4G/5G promoter polymorphism

    Get PDF
    BACKGROUND: Dengue virus infected patients have high plasminogen activator inhibitor type I (PAI-1) plasma concentrations. Whether the insertion/deletion (4G/5G) polymorphism in the promotor region of the PAI-1 gene is associated with increased PAI-1 plasma concentrations and with death from dengue is unknown. We, therefore, investigated the relationship between the 4G/5G polymorphism and PAI-1 plasma concentrations in dengue patients and risk of death from dengue. METHODS: A total of 194 patients admitted to the Dr. Kariadi Hospital in Semarang, Indonesia, with clinical suspected severe dengue virus infection were enrolled. Blood samples were obtained on day of admission, days 1, 2 and 7 after admission and at a 1-month follow-up visit. Plasma concentrations of PAI-1 were measured using a sandwich ELISA kit. The PAI-1 4G/5G polymorphism was typed by allele-specific PCR analysis. RESULTS: Concentrations of PAI-1 on admission and peak values of PAI-1 during admission were higher than the values measured in healthy controls. Survival was significantly worse in patients with PAI-1 concentrations in the highest tertile (at admission: OR 4.7 [95% CI 0.9–23.8], peak value during admission: OR 6.3 [95%CI 1.3–30.8]). No association was found between the PAI-1 4G/5G polymorphism, and PAI-1 plasma concentrations, dengue disease severity and mortality from dengue. CONCLUSION: These data suggest that the 4G/5G polymorphism has no significant influence on PAI-1 concentrations in dengue virus infected patients and is not associated with the risk of death from dengue. Other factors contributing to the variability of PAI-1 plasma concentrations in patients with dengue need to be explored

    Vasopressors and Inotropes in the Treatment of Human Septic Shock: Effect on Innate Immunity?

    Get PDF
    Catecholamines have been suggested to modulate innate immune responses in experimental settings. The significance hereof in the treatment of human septic shock is unknown. We therefore sought if and how vasopressor/inotropic doses relate to pro-inflammatory mediators during treatment of septic shock. We prospectively studied 20 consecutive septic shock patients. For 3 days after admission, hemodynamic variables, lactate and plasma levels of interleukins (IL)-6 and 8, tumor necrosis factor (TNF)-α, and elastase-α1-antitrypsin were measured six hourly. Doses of vasoactive drugs were recorded. Of the 20 patients, nine died in the intensive care unit. Dobutamine doses were positively associated and related to TNF-α plasma levels, independently of disease severity, hemodynamics, and outcome, in multivariable models. Dopamine doses were positively associated with IL-6, and norepinephrine was inversely associated with IL-8 and TNF-α levels. Our observations suggest that catecholamines used in the treatment of human septic shock differ in their potential modulation of the innate immune response to sepsis in vivo. Dobutamine treatment may contribute to circulating TNF-α and dopamine to IL-6, independently of activated neutrophils. Conversely, norepinephrine may lack pro-inflammatory actions

    Enhanced effects of cigarette smoke extract on inflammatory cytokine expression in IL-1β-activated human mast cells were inhibited by Baicalein via regulation of the NF-κB pathway

    Get PDF
    Background: Human mast cells are capable of a wide variety of inflammatory responses and play a vital role in the pathogenesis of inflammatory diseases such as allergy, asthma, and atherosclerosis. We have reported that cigarette smoke extract (CSE) significantly increased IL-6 and IL-8 production in IL-1β-activated human mast cell line (HMC-1). Baicalein (BAI) has anti-inflammatory properties and inhibits IL-1β- and TNF-α-induced inflammatory cytokine production from HMC-1. The goal of the present study was to examine the effect of BAI on IL-6 and IL-8 production from CSE-treated and IL-1β-activated HMC-1.Methods: Main-stream (Ms) and Side-stream (Ss) cigarette smoke were collected onto fiber filters and extracted in RPMI-1640 medium. Two ml of HMC-1 at 1 × 10 6 cells/mL were cultured with CSE in the presence or absence of IL-1β (10 ng/mL) for 24 hrs. A group of HMC-1 cells stimulated with both IL-1β (10 ng/ml) and CSE was also treated with BAI. The expression of IL-6 and IL-8 was assessed by ELISA and RT-PCR. NF-κB activation was measured by electrophoretic mobility shift assay (EMSA) and IκBα degradation by Western blot.Results: Both Ms and Ss CSE significantly increased IL-6 and IL-8 production (p \u3c 0.001) in IL-1β-activated HMC-1. CSE increased NF-κB activation and decreased cytoplasmic IκBα proteins in IL-1β-activated HMC-1. BAI (1.8 to 30 μM) significantly inhibited production of IL-6 and IL-8 in a dose-dependent manner in IL-1β-activated HMC-1 with the optimal inhibition concentration at 30 μM, which also significantly inhibited the enhancing effect of CSE on IL-6 and IL-8 production in IL-1β-activated HMC-1. BAI inhibited NF-κB activation and increased cytoplasmic IκBα proteins in CSE-treated and IL-1β-activated HMC-1.Conclusions: Our results showed that CSE significantly increased inflammatory cytokines IL-6 and IL-8 production in IL-1β-activated HMC-1. It may partially explain why cigarette smoke contributes to lung and cardiovascular diseases. BAI inhibited the production of inflammatory cytokines through inhibition of NF-κB activation and IκBα phosphorylation and degradation. This inhibitory effect of BAI on the expression of inflammatory cytokines induced by CSE suggests its usefulness in the development of novel anti-inflammatory therapies

    Synthetic Toll Like Receptor-4 (TLR-4) Agonist Peptides as a Novel Class of Adjuvants

    Get PDF
    Background: Adjuvants serve as catalysts of the innate immune response by initiating a localized site of inflammation that is mitigated by the interactions between antigens and toll like receptor (TLR) proteins. Currently, the majority of vaccines are formulated with aluminum based adjuvants, which are associated with various side effects. In an effort to develop a new class of adjuvants, agonists of TLR proteins, such as bacterial products, would be natural candidates. Lipopolysaccharide (LPS), a major structural component of gram negative bacteria cell walls, induces the systemic inflammation observed in septic shock by interacting with TLR-4. The use of synthetic peptides of LPS or TLR-4 agonists, which mimic the interaction between TLR-4 and LPS, can potentially regulate cellular signal transduction pathways such that a localized inflammatory response is achieved similar to that generated by adjuvants. Methodology/Principal Findings: We report the identification and activity of several peptides isolated using phage display combinatorial peptide technology, which functionally mimicked LPS. The activity of the LPS-TLR-4 interaction was assessed by NF-kB nuclear translocation analyses in HEK-BLUE TM-4 cells, a cell culture model that expresses only TLR-4, and the murine macrophage cell line, RAW264.7. Furthermore, the LPS peptide mimics were capable of inducing inflammatory cytokine secretion from RAW264.7 cells. Lastly, ELISA analysis of serum from vaccinated BALB/c mice revealed that the LPS peptide mimics act as a functional adjuvant
    corecore