16 research outputs found

    Effect of elevated pressure on air-assisted primary atomization of coaxial liquid jets : Basic research for entrained flow gasification

    Get PDF
    Highly resolved numerical simulations have been conducted for a generic, coaxial air-blast atomizer designed for fundamental research of entrained flow gasification processes. Objective of the work is to gain a detailed knowledge of the influence of elevated reactor pressure on the primary atomization behaviour of high-viscous liquid jets. In agreement with measured breakup morphology and breakup regimes proposed in literature, the simulations yield a pulsating mode instability of liquid jet, along with disintegrations of fibre-type liquid fragments for different pressures. From the mechanism point of view, the breakup process has been shown to be triggered by concentric, axisymmetric ring vortices, which disturb the liquid jet surface in a first stage and penetrate further into the intact core, leading to interfacial instabilities and pinch-off of liquid ligaments. The liquid jet breaks up faster at elevated pressure, leading to a shorter core length LC_{C}. The calculated exponent (b ≈\thickapprox -0.5) of the power law for fitting the decrease of LC_{C} with p agrees well with measured correlations from literature in terms of varied momentum flux ratio M and Weber number WeG_{G}, although water jets, atmospheric pressure and different air-assisted, external mixing nozzles were used in these works. Therefore, the effect of elevated pressure is equivalent to that of increased M or WeG_{G} , which scale linearly with p or the gas density for the current setup. The specific kinetic energy of liquid kL_{L} has been found to be increased with p, which is particularly pronounced in the high frequency range. A first-order estimate has been proposed, which can be used for the evaluation of liquid kinetic energy or droplet velocity within the spray. The results have been validated by simulations with twice-refined resolution, yielding a grid-independence behaviour with respect to the primary breakup characteristics. However, the follow-up processes with secondary breakup and spray dispersion are reproduced better by using the finer grid

    Structure and superconducting characteristics of magnesium diboride, substitution of boron atoms by oxygen and carbon

    Get PDF
    An x-ray analysis of MgB2-based materials shows that they contain MgB2 and MgO phases. According to a quantitative Auger analysis (taken after removing the oxidized surface layer by Ar ion etching in the microscope chamber) the MgB2 phase contains some amount of oxygen that approximately corresponds to the composition MgB2.2-1.7O0.4-0.6. Rietveld refinement of the MgB2 phase, based on EDX data with varying B/O content, leads to the composition MgB1.68-1.8O0.2-0.32. Ab-initio modelling of boron substitution by oxygen in MgB2 ([Delta]Hf =-150.6 meV/atom) shows that this is energetically favourable up to the composition MgB1.75O0.25 ([Delta]Hf =-191.4 meV/atom). In contrast to carbon substitution, where very small levels of doping can dramatically affect the superconducting characteristics of the material with concomitant changes in the electron density, oxygen substitution results in very little change in the superconducting properties of MgB2. The formation of vacancies at the Mg site of both MgB2 and substituted MgB1.75O0.25 was modelled as well, but has shown that such processes are energetically disadvantageous ([Delta]Hf of Mg0.875B2 and Mg0.75B1.75O0.25 are equal to -45.5 and -93.5 meV/atom, respectively)

    Structure and superconducting characteristics of magnesium diboride, substitution of boron atoms by oxygen and carbon

    Get PDF
    An x-ray analysis of MgB2-based materials shows that they contain MgB2 and MgO phases. According to a quantitative Auger analysis (taken after removing the oxidized surface layer by Ar ion etching in the microscope chamber) the MgB2 phase contains some amount of oxygen that approximately corresponds to the composition MgB2.2-1.7O0.4-0.6. Rietveld refinement of the MgB2 phase, based on EDX data with varying B/O content, leads to the composition MgB1.68-1.8O0.2-0.32. Ab-initio modelling of boron substitution by oxygen in MgB2 ([Delta]Hf =-150.6 meV/atom) shows that this is energetically favourable up to the composition MgB1.75O0.25 ([Delta]Hf =-191.4 meV/atom). In contrast to carbon substitution, where very small levels of doping can dramatically affect the superconducting characteristics of the material with concomitant changes in the electron density, oxygen substitution results in very little change in the superconducting properties of MgB2. The formation of vacancies at the Mg site of both MgB2 and substituted MgB1.75O0.25 was modelled as well, but has shown that such processes are energetically disadvantageous ([Delta]Hf of Mg0.875B2 and Mg0.75B1.75O0.25 are equal to -45.5 and -93.5 meV/atom, respectively)

    Higher borides and oxygen-enriched Mg-B-O inclusions as possible pinning centers in nanostructural magnesium diboride and the influence of additives on their formation

    Full text link
    The study of high pressure (2 GPa) synthesized MgB2-based materials allows us to conclude that higher borides (with near MgB12 stoichiometry) and oxygen-enriched Mg-B-O inclusions can be pinning centers in nanostructural magnesium diboride matrix (with average grain sizes of 15-37 nm). It has been established that additions of Ti or SiC as well as manufacturing temperature can affect the size, amount and distribution of these inclusions in the material structure and thus, influence critical current density. The superconducting behavior of materials with near MgB12 stoichiometry of matrix is discussed.Comment: 4 pages, 1 figues, presented at VORTEX VI-2009, accepted for Physica

    Simulations of Air-assisted Primary Atomization at Different Air-to-Liquid Injection Angles for Entrained Flow Gasification

    Get PDF
    Highly-resolved numerical simulations have been performed for a coaxial, twin-fluid nozzle, which is designed for fundamental research of the atomization process in entrained flow gasification (EFG). Objective of the work is to reveal specifically the influence of the relative injection angle α\alpha between the central liquid jet and the annular airflow (external-mixing) on the primary atomization. A glycerol/water mixture with a dynamic viscosity of 200 mPa·s is atomized at atmospheric condition and with a gas-toliquid ratio of 0.6. The angle of attack between liquid and airflow has been varied from α\alpha = 0° to 60°. The computational grid consists of approx. 10 million cells, using a smallest resolution of 25 µm. In agreement with the corresponding experiment, the calculated breakup morphology is characterized by a pulsating mode destabilization, accompanied by disintegration of membrane-type ligaments. The breakup of the liquid jet is found to be enhanced from α\alpha = 0° to 30°, which leads to a decrease of the liquid core length LCL_C. This is attributable to a reinforced aerodynamic interaction or an enhanced multiphase momentum transfer from the gas to the liquid phase, respectively. The gas flow velocity close to the liquid jet is increased in this case, which is in accordance with results obtained from the PIV measurement. The reason for the increase of local flow velocity is shown to be caused by an increased local static pressure at the base of the liquid jet with increased α\alpha, which results in a favorable pressure gradient in main flow direction. However, further increase of α\alpha from 30° to 60° leads to a decreased flow velocity around the liquid jet, so that LCL_C increases and the atomization performance decreases with α\alpha. The behavior is further elucidated by means of the multiphase momentum exchange or the liquid phase kinetic energy, which increase from α\alpha = 0° to 30° and decreases with further increased α\alpha. The result reveals the essential impact of the nozzle design parameters on the atomization process in addition to the general operating parameters. In summary, there exists an optimal relative injection angle between the liquid and air streams in the range of 30°<α\alpha<45° for a best atomization performance

    Metrological Characterization of a High-Temperature Hybrid Sensor Using Thermal Radiation and Calibrated Sapphire Fiber Bragg Grating for Process Monitoring in Harsh Environments

    No full text
    Fiber Bragg gratings inscribed in single crystalline multimode sapphire fibers (S-FBG) are suitable for monitoring applications in harsh environments up to 1900 °C. Despite many approaches to optimize the S-FBG sensor, a metrological investigation of the achievable temperature uncertainties is still missing. In this paper, we developed a hybrid optical temperature sensor using S-FBG and thermal radiation signals. In addition, the sensor also includes a thermocouple for reference and process control during a field test. We analyzed the influence of the thermal gradient and hotspot position along the sensor for all three detection methods using an industrial draw tower and fixed point cells. Moreover, the signal processing of the reflected S-FBG spectrum was investigated and enhanced to determine the reachable measurement repeatability and uncertainty. For that purpose, we developed an analytical expression for the long-wavelength edge of the peak. Our findings show a higher stability against mechanical-caused mode variations for this method to measure the wavelength shift compared to established methods. Additionally, our approach offers a high robustness against aging effects caused by high-temperature processes (above 1700 °C) or harsh environments. Using temperature-fixed points, directly traceable to the International System of Units, we calibrated the S-FBG and thermocouple of the hybrid sensor, including the corresponding uncertainty budgets. Within the scope of an over 3-weeks-long field trial, 25 production cycles of an industrial silicon manufacturing process with temperatures up to 1600 °C were monitored with over 100,000 single measurements. The absolute calibrated thermocouple (Uk=2≈1K…4K) and S-FBG (Uk=2≈10K…14K) measurements agreed within their combined uncertainty. We also discuss possible strategies to significantly reduce the uncertainty of the S-FBG calibration. A follow-up measurement of the sensor after the long-term operation at high temperatures and the transport of the measuring system together with the sensor resulted in a change of less than 0.5 K. Thus, both the presented hybrid sensor and the measuring principle are very robust for applications in harsh environments
    corecore