65 research outputs found

    Determination of critical current density in melt-processed HTS bulks from levitation force measurements

    Full text link
    A simple approach to describe the levitation force measurements on melt-processed HTS bulks was developed. A couple of methods to determine the critical current density JcJ_c were introduced. The averaged abab-plane JcJ_c values for the field parallel to this plane were determined. The first and second levitation force hysteresis loops calculated with these JcJ_c values coincide remarkably well with the experimental data.Comment: 10 pages (tex), 2 figures (in jpeg

    Superconducting joining of melt-textured Y-Ba-Cu-O bulk material

    Full text link
    The Tm-Ba-Cu-O solder can be successfully used to produce a superconductive joint between MT-YBCO parts. The peculiarities of solidification, phase formation, structure transformations and electromagnetic properties of MT-YBCO soldered with TmBa2Cu3O7-d are discussed.Comment: PS of 6 pages text and 5 figures, presented at ICMC'2000, Brasi

    Implementation and Validation of a Computationally Efficient DNS Solver for Reacting Flows in OpenFOAM

    Get PDF
    To meet future climate goals, the efficiency of combustion devices has to be increased. This requires a better understanding of the underlying physics. The simulation of turbulent flames is a challenge because of the multi-scale nature of combustion processes: relevant length scales span over five orders of magnitude and time scales over more than ten. Because of this, the direct numerical simulation (DNS) of turbulent flames is only possible on large supercomputers. A DNS solver for chemically reacting flows implemented in the open-source framework OpenFOAM is presented. The thermo-chemical library Cantera is used to compute detailed transport coefficients based on kinetic gas theory. The multi-scale nature of time scales, which are much lower for the combustion chemistry than for the flow, are bridged by an operator splitting approach, which employs the open-source solver Sundials to integrate chemical reaction rates. Because the direct simulation of turbulent flames has to be performed on supercomputers, special care has been taken to improve the computational performance. A tool was developed which generates highly optimized C++ source code for the computation of chemical reaction rates. Additionally, a load balancing approach specifically made for the computation of chemical reaction rates is employed. In total, these optimizations can reduce total simulation times by up to 70 %. The accuracy of the new solver is assessed from different canonical testcases: 2D and 3D Taylor-Green vortex simulations show that the solver can reach up to fourth order convergence rates and that results differ by less than 1 % when compared to spectral DNS codes. Molecular diffusion and chemical reaction rates are compared to solutions of 1D flames from Cantera, showing perfect agreement. The solver is used to simulate the Sydney/Sandia burner. The simulation is performed on one of Germany\u27s largest supercomputer on 28 800 CPU cores, employing 150 million cells and a chemical reaction mechanism with 19 species and about 200 reactions. Comparison with experimental data shows excellent agreement for time averaged and RMS values

    Growth-related profiles of remanent flux in bulk melt-textured YBaCuO crystal magnetized by pulsed fields

    Full text link
    We have studied the remanent magnetic flux distribution in bulk melt-textured YBa2Cu3O7 (YBCO) crystals after their magnetization in quasi-static and pulsed magnetic fields up to 6T. It has been shown that, provided that the magnetic pulse is sharp enough and its amplitude much exceeds the twice penetration magnetic field, the pulse magnetization technique becomes extremely sensitive to the sample inhomogeneities. Using this method with appropriate parameters of the magnetic pulse, we have particularly demonstrated that the growth of YBCO crystals in the growth sectors (GSs) responds for a macroscopic arrangement of weaks links -- they mostly appear inside of GSs, but not along the GS boundaries.Comment: 8 pages in LaTeX2e, 5 figures. Revised version, submitted to Supercond. Sci. Techno
    • …
    corecore