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In solvers for reacting flows like reactingFoam, most of the simulation time is spent on computing 

chemical reaction rates if detailed reaction mechanisms are used. In parallel simulations, the time required 

for the chemistry computations can vary drastically between processes. In this work, an optimization 

method for High Performance Computing (HPC) of reacting flow solvers is presented. The method consists 

of a dynamic load balancing approach, which takes advantage of the chemistry computations not being 

dependent on neighboring cell values or other spatial relations. The approach is based on forming groups 

of processes that share their chemistry workload and can be used together with adaptive mesh refining 

and additional load balancing techniques. It requires little changes to the existing code but helps to reduce 

the total simulation time significantly as well as increases the utilization of hardware resources on HPC 

clusters. It is shown that for the validation case, the total simulation time is reduced by 30%. The optimized 

solver along with a self-implemented, highly-efficent approach for detailed calculation of chemical 

reaction and molecular transport is applied to simulate a turbulent jet flame. For this flame, the 

computational grid consists of 150 million cells and the simulation has been run on Germany's fastest 

supercomputer Hazel-Hen at HLRS Stuttgart on 28,800 CPU cores. It is shown that the total simulation time 

for this case is reduced by 10 %, which corresponds to over one million saved CPU hours. 

 

1. Introduction 

Accurate simulations of flames are computationally expensive due to the large number of chemical 

reactions and species relevant during the combustion. For example, the oxidation of methane in air can 

be described by 325 reactions and 53 chemical species [1]. Although simplified models are available, a 

detailed insight into the realistic flame dynamics and pollutant emission can only be achieved by using 
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these detailed reaction mechanisms. At present, highly resolved simulations of 3D turbulent flames 

without turbulence or chemistry models employing complex reaction mechanisms are possible on today’s 

fastest supercomputers [2,3]. It is therefore mandatory that the simulation software is suitable for high 

performance computing (HPC) achieving the best possible performance. If detailed reaction mechanisms 

are utilized in the simulation, the most computing time is spent on calculating the chemical reaction 

rates [3]. In previous works, serial approaches for speeding up the chemistry computations have been 

discussed [4]. In this work, the parallel performance of OpenFOAM’s reactingFoam class of solvers is 

optimized, which often suffers from load balancing issues when detailed reaction mechanisms are used. 

The reason for this imbalance is that OpenFOAM, like many other CFD tools, computes the chemical 

reaction rates with an operator splitting approach. This means that instead of computing the reaction rates 

�� � directly from the Arrhenius laws of the chemical reactions, they are averaged over the CFD time step: 
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Here, 	�� is the current concentration of the  th species, �� its molar mass, ���� the averaged reaction 

rate, 
 the time and Δ
��� the CFD time step. During this integration over the CFD time step, each cell is 

considered as a closed batch reactor. This allows setting the CFD time step according to the Courant 

number without taking the smallest time scale of the chemical reactions into account, which is typically 

many orders of magnitude below the CFD time step. Eq. (2) represents a system of highly non-linear, stiff 

and coupled ordinary differential equations (ODE) because �� � in general depends on all species 

concentrations and temperature. The system of ODEs has to be solved in each cell in order to get an 

approximation of the concentration 	��
� at the next CFD time step. The chemical sub-time steps are 

adaptively chosen during the integration. OpenFOAM offers different integrators for this. The number of 

time steps or iterations, however, depends on the numerical stiffness for the current conditions in each 

cell. Therefore, some cells require more time than others. Only the process with the highest workload 

determines the overall simulation time. In the case of flames, the chemical reactions take place only in a 

thin layer within the flame front. When the mesh is decomposed to the different processes, some 

processes might have more cells in the reacting zone than others. Since all processes have to synchronize 

after computing the reaction rates, they have to wait for the slowest process or the process, which has the 

most cells within the flame’s reaction zone, respectively. 
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There are some factors that influence how much the processes are imbalanced: 

• The ratio of cells with small chemical time scales (i.e. cells within the flame’s reaction zones) to 

cells without chemical reaction: for example if the flame constitutes only a small part of the 

computational domain while the largest part is an inert flow. 

• The size of the reaction mechanism: The more complex the system of chemical reactions is, the 

more expensive are the iterations of the ODE integrator leading to more imbalance. 

• The stiffness of the reaction mechanism: The smaller the chemical time scales become and the 

larger the gap between the smallest and largest chemical time scales among the reactions within 

one cell is, the more work has to be performed by the integrator. 

• The chemistry ODE solver tolerances: OpenFOAM allows specifying absolute and relative 

tolerances for the ODE integrator. The smaller the tolerances become, the more accurate is the 

result but the more work has to be done by the integrator for cells within the reaction zone. 

• Adaptive mesh refinement: If adaptive mesh refining is used to improve the resolution of the 

reaction zone, processes that require the most time for the ODE integration are assigned even 

more cells in the reaction zone. 

• Time steps: the higher the CFD time steps are, the more chemical sub-time steps have to be 

performed by the ODE integrator. 

• Using a threshold temperature: In OpenFOAM, the computation of chemical reaction rates can be 

disabled if the temperature is below a threshold value (Treact). This usually does not lead to 

performance improvements in parallel simulations. Some processes might not performing any 

chemistry computations at all, but they have to wait until the slowest processes are finished, 

leading to even greater load imbalances. 

If the setup for the reacting flow tends toward a steady-state and the locations with small chemical time 

scales or fast reactions, where the ODE integrator has to perform the most iterations, are known 

beforehand, the mesh can be decomposed manually to assign less cells to processes in these regions. This 

approach however has several downsides: The user has to perform the mesh decomposition manually, 

requiring additional work. The assignment of different numbers of cells to each process might result in 

overall better performance. However, as shown in the next section, this introduces new load balancing 

problems for the solution of the transport equations. Lastly, in many cases, the locations with small 

chemical time scales are not known beforehand or the setup is transient, e.g. a turbulent flame that 

propagates transiently within the domain. 

In this work, a load balancing approach is presented, which dynamically rebalances only the computation 

of chemical reaction rates. This approach is computationally cheap, easy to implement, can be combined 

with adaptive mesh refining and leads to better HPC hardware utilization as well as shorter simulation 

times. 
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2. Performance Profiling 

In order to quantify the parallel load imbalances in OpenFOAM’s reactingFoam class of solvers, a 

simple 2D flame setup is used to perform performance profiling with different tools. The setup consists of 

a methane-air flame using the GRI3.0 reaction mechanism with 325 reactions and 53 chemical species [1] 

(see Fig. 1). The mesh consists of 500,000 cells and the simulation is performed with second order time 

discretization and cubic interpolation for spatial discretizations. The OpenFOAM version used in the tests 

is OpenFOAM v1612+; however, the discussed results apply to all modern versions of OpenFOAM. The 

solver is a modified version of reactingFoam [4]. The simulation is performed on 6 nodes (120 CPU 

cores) of the “JURECA” cluster at the Jülich Supercomputing Centre [5]. The performance profiling has 

been done with the tracing tool Extrae [6]. Figure 2 shows the profiling results visualized in Paraver [7].  

Each horizontal line represents one of the 120 processes. Depicted is one full time step from the simulation 

with time passing from left to right. The black color denotes useful work done by the solver. The blue areas 

show the time spend in MPI communication and waiting, leading to unused computing power. In this case, 

about 60 % of the computing time is spent on computing chemical reaction rates, denoted by the red brace 

on the bottom left. During this time, there are only a few processes, which need the whole time for the 

chemistry computations (red box). The rest of the processes spends almost 30 % of the time waiting, not 

performing any work. This is due to the thin flame front (region with small time scales) in Fig. 1 being 

distributed only to a subset of the 120 processes. 

Fig. 1: Reaction zone of a 2D flame depicted by the methane reaction rate in the computational domain. 

The domain is decomposed into 120 parts. 
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Fig. 2: Profiling results from Extrae, showing the time each process has to wait (blue) during one time step. 

 

Fig. 3: Profiling results for the same case with Score-P. Green denotes useful work done by the solver, 

grey shows the chemistry computations and red is time spent waiting. 
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Figure 3 shows profiling results for the same case, recorded with the performance tool Score-P [8] and 

visualized with Vampir [9]. Again, one time step is depicted with each horizontal line representing one 

process. Green shows useful work done by the solver, grey is the time spent in chemistry computations 

and red shows the waiting time. Since the chemistry computations require most of the total computing 

time, there are a lot of resources being wasted by the waiting processes. It can also be seen from Fig. 3 

that the solution of the transport equations (green areas) is very well balanced because it scales with the 

number of cells. Dividing the mesh into parts with equal number of cells is therefore optimal for the 

solution of the transport equations. It is however apparent, that the computation of chemical reaction 

rates lead to large imbalances among the processes. 

 

3. Dynamic Load Balancing Implementation 

In order to improve the load balancing, an approach is presented which dynamically rebalances the 

workload of chemistry computations during the simulation between groups of processes. Since this load 

balancing only affects the chemistry part of the solver, the mesh can still be decomposed into an equal 

number of cells, thereby achieving the best load balance for the chemistry while keeping the best load 

balance for the transport equations. 

The dynamic load balancing method is based on the fact, that the chemical reaction rates can be computed 

from the local cell values, without considering neighbouring cells. This means, that the workload can be 

freely shared between processes without considering spatial relations, connectivities or processor 

boundary patches. It can therefore be used together with adaptive mesh refining and other load balancing 

techniques. 

The load balancing method consists first of all processes exchanging the time needed for computing the 

chemical reaction rates in their part of the decomposed mesh with all other processes, shown below in 

pseudo code: 

 

 

 

Every N time steps: 

1) Create a list containing the process ID and time for the 

chemistry 

2) gather/scatter the list to all processes 

3) Sort the list by chemistry time 

4) Assign pairs of processes that will share their workload 
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This is illustrated in Fig. 4: First, a list containing the time required for the chemistry computations of each 

process and the process ID is shared between all processes. Because step 2) involves a potentially 

expensive all-to-all communication, it is only performed every N CFD time steps, where N is chosen by the 

user. If the location of the reaction zone changes fast, then N should be a low value (e.g. 1000) to ensure 

a good load balancing. After step 2), each process has the same copy of the list of process IDs and chemistry 

times, as shown in Fig. 4a. In step 3), each process sorts its copy of the list by the chemistry time (Fig. 4b). 

In step 4), each process looks up its position ! in the list and is assigned the process at position �"# � ! �
1� as its partner, where "# is he number of processes. For example, this means that the process with the 

process ID 0 from Fig. 4c knows, that it needs the most time for the chemistry, and therefore forms a pair 

with process 2, which requires the least time. Likewise, process 1 is the process with the second highest 

time and therefore forms a pair with process 4, having the second lowest time. 

 

 

Fig. 4: The method first consists of: (a) sharing a list containing all process IDs and time spent computing 

the chemical reaction rates. (b) Sorting the list by the chemistry time. (c) Assigning pairs of processes 

depending on the chemistry time. 
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After step 4), each process knows the process ID of its partner and it also knows if it is the “sender” 

(requiring more time for the chemistry) or the “receiver” (requiring less time). This information is then 

used in the dynamic load balancing step: 

 

At each CFD time step, the sender process, i.e. the process that needs more time for the chemistry 

computations than its partner process, computes the reaction rates not for all its cells, but only for the 

first (N_cells-N_shared) cells. N_cells is the total number of cells of the sender process and 

N_shared the number of cells communicated to the receiver process. However, before that, it creates a 

buffer containing a list of the mass fractions, temperatures and pressures from the rest of its cells, and 

sends the buffer to its partner process. 

The partner process (“receiver”) computes the reaction rates for all of its own cells. It then receives the 

buffer from its partner process and uses the information within the buffer to compute the additional 

reaction rates from the sender process. They are then sent back to the sender process, along with the time 

it took to compute all of its own reaction rates and the time to compute the additional reaction rates. 

The number of exchanged cells N_shared is then dynamically recomputed for the next time step, so that 

the amount of work in the sender and receiver process is equal based on the current time measurements. 

The sender process keeps track of how much time is needed for each cell of its own domain, to decide the 

correct number of cells required to achieve an equal distribution of computing time. 

Each time step: 

If (sender) 

1) Create buffer containing a list of species mass fractions, 

temperatures and pressures of the last N_shared cells 

2) Send the buffer to the partner process 

3) Compute the reaction rates for cells 0 to (N_cells-N_shared) 

4) Receive the reaction rates for cells with index N_shared to 

N_cells 

5) Send the value of N_shared for the next time step to receiver 

If (receiver) 

1) Compute the reaction rates for all cells on own mesh 

2) Receive the buffer from sender process 

3) Compute the reaction rates for all cells in the buffer 

4) Send the additional reaction rates back to the sender process 

5) Receive the value of N_shared for the next time step 
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In summary: Every N CFD time steps it is decided, which two processes form a pair and which one of the 

two is the sender and the receiver. These pairs stay connected for the next N time steps. Then, new pairs 

are formed based on the current load imbalances. Every CFD time step, the process designated as sender 

sends some of its cells, meaning a list of mass fractions, temperatures and pressures, to the receiver 

process it currently forms a pair with. The receiver computes the reaction rates for the additional cells and 

sends them to the sender, along with the time it took to compute the reaction rates. Based on these 

timings, the sender tells the receiver, how many cells will be transferred in the next time step. 

With this method, only one send/receive pair for the buffer and one send or receive of the N_shared 

value per process are required for the load balancing and most of the communication overhead can be 

hidden by non-blocking communication. Since this method is only affecting the chemistry computations, 

it can easily be implemented into the chemistryModel without affecting other parts of the code or 

other load balancing methods. Because the workload is rebalanced every time step, the dynamic load 

balancing is efficient even for cases where the reaction zone moves rapidly during the simulation and only 

a few of the processes have a lot more work to do than the others. 

 

4. Evaluation of Performance Gain 

The method described in the last section is implemented and applied to the case from section 2, using 100 

CPU cores from the ForHLR II cluster at KIT [10] and OpenFOAM version 1712+. Figure 5 on the left shows 

the time for computing the chemical reaction rates on each process during one time step. The blue bars 

show the time for chemistry computations without load balancing and the orange bars with the load 

balancing approach from section 3. The dashed lines show how much time the chemistry computations 

take during the simulation, which is solely determined by the slowest process. By using the load balancing 

approach, the time reduces from about 12 seconds to 8 seconds, therefore saving more than 30% of the 

time. The computational resources wasted by waiting processes also has drastically reduced. The ratio of 

time of the slowest process to the fastest process is reduced from a ratio of 2 to a ratio of 1.3. 

By increasing the CFD time step from 0.1 μs to 1 μs (Fig. 5 middle), the computation time for the chemistry 

increases (see section 1). Again, the time is reduced by 35% of the original time (from 20 s to 13 s) when 

the dynamic load balancing is used, and the ratio of chemistry times from the slowest to the fastest process 

reduces from 3.3 to 1.3. Similar results are obtained for the same case, when the ODE integrator tolerances 

are lowered by an order of magnitude (Fig. 5 on the right). 
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Fig. 5: Time for the chemistry for all processes for the reference case from section 2 (left), the same case 

with 10 times larger CFD time step (middle), and the same case with ten times lower absolute and relative 

solver tolerances (right). 

 

5. Application to a Turbulent Flame on a HPC Cluster 

As explained in the introduction, performing highly resolved simulations of turbulent flames with detailed 

chemistry can only be run on modern supercomputers. As an example of a case benefitting from the 

presented load balancing approach, a simulation of a turbulent flame [11] is briefly presented in this 

section. 

Due to the complex interplay of the turbulent flow and the combustion chemistry, a modified version of 

reactingFoam is used which employs detailed molecular transport for each chemical species [4]. This 

is achieved by coupling OpenFOAM with the open-source library Cantera [12]. An optimized method for 

computing the reaction rates is also used, which is able to use a reaction mechanism including quasi-steady 

state species [13]. The case consists of 150,000,000 cells and considers 19 different chemical species. The 

simulation is performed on Germany’s fastest supercomputer “Hazel Hen” at the High Performance 

Computing Center Stuttgart [14] with 28,800 CPU cores. Figure 6 shows a 2D slice through the 

temperature field of the flame. On the left, unburnt fuel and oxidizer enter the domain.  
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Fig. 6: 2D cutting plane of the temperature field. 

In this simulation, there is also an imbalance of the chemistry time between the processes because a 

complex reaction mechanism is used. Compared to the validation case in section 4, the imbalances are 

smaller (ratio of chemistry time from the slowest to the fastest process is 1.6) due the employed reaction 

mechanism [13] being smaller than GRI 3.0 used in section 4. Applying the presented load balancing 

approach to this case leads to a reduction of total computing time of 10 %. Because of the large scale of 

this simulation, this reduction in simulation time corresponds to over 1 million core hours that can be 

saved.  

 

Fig. 7: 2D temperature cutting plane and iso-surface of vorticity colored by the gas velocity. 

Due to the highly resolved nature of the simulation in space and time together with the complex reaction 

mechanism, the results will help to gain deeper insights into the effect of turbulent flow structures on the 

flame properties. In Fig. 7 on the bottom left, the burner nozzle can be seen. An iso-surface of vorticity 

colored by the gas velocity shows the turbulent flow structures of the cold, unburnt fuel-oxidizer mixture 
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coming from the nozzle. As the flow heats up (shown by the 2D temperature cutting plane in the 

background), the turbulent flow structures are dampened by the increased viscosity. 

 

6. Summary 

In this work, a HPC solver optimization for parallel load balance is presented. The current load balancing 

issues of the reactingFoam class of solvers are discussed in cases where highly accurate results with 

detailed chemistry reaction mechanisms are desired. Two profiling tools are used for the analysis. 

The load balancing approach is computationally cheap and easy to implement. The method is based on 

the fact that chemical reaction rates can be computed without any spatial information or dependence 

because they only depend on the local cell values. Therefore, a list of values of mass fractions, 

temperatures and pressures from the cells can freely be distributed among processes without 

preconditions, side effects or mesh redistribution. The implemented load balancing method forms pairs of 

processes that share their workload. The rebalancing between the pairs is done dynamically at each CFD 

time step, thus adapting even to highly transient cases. Only one send/receive pair of a buffer and an 

additional send/receive per process are required for this so that the overhead is low. The method can also 

be extended to groups of more than two processes sharing their workload at the expense of higher 

communication overhead. The benefits of this method are not only the reduction in total computing time 

but also that it can be combined with adaptive mesh refinement and different load balancing techniques 

targeting the mesh, thereby ensuring optimal load balancing not only for the chemistry but also for the 

solution of the transport equations. The method is validated for a case run with 100 processes with 

OpenFOAM 1712+. The simulation times are reduced by about 30 %, saving many core hours, and the HPC 

hardware is more efficiently used due to less waiting times among the processes. 

As an example of a real application benefitting from this optimization, the simulation of a turbulent flame 

is presented using complex reaction chemistry and detailed molecular transport. The simulation is 

performed on up to 28,800 CPU cores on Germany’s largest supercomputer “Hazel Hen”. The detailed 

results will help to improve industrially relevant combustion models. 
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