9 research outputs found

    Hepatic p53 is regulated by transcription factor FOXO1 and acutely controls glycogen homeostasis

    Get PDF
    The tumor suppressor p53 is involved in the adaptation of hepatic metabolism to nutrient availability. Acute deletion of p53 in the mouse liver affects hepatic glucose and triglyceride metabolism. However, long-term adaptations upon the loss of hepatic p53 and its transcriptional regulators are unknown. Here we show that short-term, but not chronic, liver-specific deletion of p53 in mice reduces liver glycogen levels, and we implicate the transcription factor forkhead box O1 protein (FOXO1) in the regulation of p53 and its target genes. We demonstrate that acute p53 deletion prevents glycogen accumulation upon refeeding, whereas a chronic loss of p53 associates with a compensational activation of the glycogen synthesis pathway. Moreover, we identify fasting-activated FOXO1 as a repressor of p53 transcription in hepatocytes. We show that this repression is relieved by inactivation of FOXO1 by insulin, which likely mediates the upregulation of p53 expression upon refeeding. Strikingly, we find that high-fat diet-induced insulin resistance with persistent FOXO1 activation not only blunted the regulation of p53 but also the induction of p53 target genes like p21 during fasting, indicating overlapping effects of both FOXO1 and p53 on target gene expression in a context-dependent manner. Thus, we conclude that p53 acutely controls glycogen storage in the liver and is linked to insulin signaling via FOXO1, which has important implications for our understanding of the hepatic adaptation to nutrient availability

    Lipoprotein Subclasses Independently Contribute to Subclinical Variance of Microvascular and Macrovascular Health

    Get PDF
    Lipoproteins are important cardiovascular (CV) risk biomarkers. This study aimed to investigate the associations of lipoprotein subclasses with micro- and macrovascular biomarkers to better understand how these subclasses relate to atherosclerotic CV diseases. One hundred and fifty-eight serum samples from the EXAMIN AGE study, consisting of healthy individuals and CV risk patients, were analysed with nuclear magnetic resonance (NMR) spectroscopy to quantify lipoprotein subclasses. Microvascular health was quantified by measuring retinal arteriolar and venular diameters. Macrovascular health was quantified by measuring carotid-to-femoral pulse wave velocity (PWV). Nineteen lipoprotein subclasses showed statistically significant associations with retinal vessel diameters and nine with PWV. These lipoprotein subclasses together explained up to 26% of variation (R2 = 0.26, F(29,121) = 2.80, p < 0.001) in micro- and 12% (R2 = 0.12, F(29,124) = 1.70, p = 0.025) of variation in macrovascular health. High-density (HDL-C) and low-density lipoprotein cholesterol (LDL-C) as well as triglycerides together explained up to 13% (R2 = 0.13, F(3143) = 8.42, p < 0.001) of micro- and 8% (R2 = 0.08, F(3145) = 5.46, p = 0.001) of macrovascular variation. Lipoprotein subclasses seem to reflect micro- and macrovascular end organ damage more precisely as compared to only measuring HDL-C, LDL-C and triglycerides. Further studies are needed to analyse how the additional quantification of lipoprotein subclasses can improve CV risk stratification and CV disease prediction

    HDL-apoA-II Is Strongly Associated with 1-Year Mortality in Acute Heart Failure Patients

    No full text
    The prognostic value of the subset of high-density lipoprotein (HDL) particles containing apolipoprotein (apo)A-II (HDL-apoA-II) in acute heart failure (AHF) remains unexplored. In this study, baseline serum levels of HDL-apoA-II (total and subfractions 1–4) were measured in 315 AHF patients using NMR spectroscopy. The mean patient age was 74.2 ± 10.5 years, 136 (43.2%) were female, 288 (91.4%) had a history of cardiomyopathy, 298 (94.6%) presented as New York Heart Association class 4, and 118 (37.5%) patients died within 1 year after hospitalization for AHF. Multivariable Cox regression analyses, adjusted for age and sex as well as other clinical and laboratory parameters associated with 1-year mortality in the univariable analyses, revealed a significant inverse association of HDL-apoA-II (hazard ratio (HR) 0.67 per 1 standard deviation (1 SD) increase, 95% confidence interval (CI) 0.47–0.94, p = 0.020), HDL2-apoA-II (HR 0.72 per 1 SD increase, 95% CI 0.54–0.95, p = 0.019), and HDL3-apoA-II (HR 0.59 per 1 SD increase, 95% CI 0.43–0.80, p < 0.001) with 1-year mortality. We conclude that low baseline HDL-apoA-II, HDL2-apoA-II, and HDL3-apoA-II serum levels are associated with increased 1-year mortality in AHF patients and may thus be of prognostic value in AHF

    Low Valine Serum Levels Predict Increased 1-Year Mortality in Acute Heart Failure Patients

    No full text
    Considering the relationship between disease severity and the extent of metabolic derangement in heart failure, we hypothesized that the serum levels of metabolites may have prognostic value for 1-year mortality in acute heart failure (AHF). The AHF study was a prospective, observational study enrolling consecutive patients hospitalized due to AHF. Metabolites were measured in serum collected at admission using NMR spectroscopy. Out of 315 AHF patients, 118 (37.5%) died within 1 year after hospitalization for AHF. The serum levels of 8 out of 49 identified metabolites were significantly different between patients who were alive and those who died within 1 year after hospitalization for AHF. Of these, only valine was significantly associated with 1-year mortality (hazard ratio 0.73 per 1 standard deviation increase, 95% confidence interval: 0.59–0.90, p = 0.003) in the multivariable Cox regression analyses. Kaplan–Maier analysis showed significantly higher survival rates in AHF patients with valine levels above the median (>279.2 µmol/L) compared to those with valine levels ≤ 279.2 µmol/L. In a receiver operating characteristics curve analysis, valine was able to discriminate between the two groups with an area under the curve of 0.65 (95% CI 0.59–0.72). We conclude that valine serum levels might be of prognostic value in AHF

    Cholesterol Content of Very-Low-Density Lipoproteins Is Associated with 1-Year Mortality in Acute Heart Failure Patients

    No full text
    Considering the relationship between the extent of metabolic derangement and the disease severity in heart failure, we hypothesized that the lipid content of very-low-density lipoprotein (VLDL) may have prognostic value for 1 year mortality in acute heart failure (AHF). Baseline serum levels of VLDL cholesterol (VLDL-C), VLDL triglycerides (VLDL-TG), VLDL phospholipids (VLDL-PL), and VLDL apolipoprotein B (VLDL-apoB) were measured using NMR spectroscopy. We calculated the ratios of the respective VLDL lipids and VLDL apoB (VLDL-C/VLDL-apoB, VLDL-TG/VLDL-apoB, and VLDL-PL/VLDL-apoB), as estimators of the cholesterol, triglyceride, and phospholipid content of VLDL particles and tested their association with mortality. Out of 315 AHF patients, 118 (37.5%) patients died within 1 year after hospitalization for AHF. Univariable Cox regression analyses revealed a significant inverse association of VLDL-C/VLDL-apoB (hazard ratio (HR) 0.43, 95% confidence interval (CI) 0.29–0.64, p < 0.001), VLDL-TG/VLDL-apoB (HR 0.79, 95% CI 0.71–0.88, p < 0.001), and VLDL-PL/VLDL-apoB (HR 0.37, 95% CI 0.25–0.56, p < 0.001) with 1 year mortality. Of the tested parameters, only VLDL-C/VLDL-apoB remained significant after adjustment for age and sex, as well as other clinical and laboratory parameters that showed a significant association with 1 year mortality in the univariable analyses. We conclude that cholesterol content of circulating VLDL (VLDL-C/VLDL-apoB) might be of prognostic value in AHF

    Associations between Endothelial Lipase, High-Density Lipoprotein, and Endothelial Function Differ in Healthy Volunteers and Metabolic Syndrome Patients

    No full text
    Metabolic syndrome (MS) is characterized by endothelial- and high-density lipoprotein (HDL) dysfunction and increased endothelial lipase (EL) serum levels. We examined the associations between EL serum levels, HDL (serum levels, lipid content, and function), and endothelial function in healthy volunteers (HV) and MS patients. Flow-mediated dilation (FMD), nitroglycerin-mediated dilation (NMD), serum levels of HDL subclasses (measured by nuclear magnetic resonance (NMR) spectroscopy), and EL serum levels differed significantly between HV and MS patients. The serum levels of triglycerides in large HDL particles were significantly positively correlated with FMD and NMD in HV, but not in MS patients. Cholesterol (C) and phospholipid (PL) contents of large HDL particles, calculated as HDL1-C/HDL1-apoA-I and HDL1-PL/HDL1-apoA-I, respectively, were significantly negatively correlated with FMD in HV, but not in MS patients. Cholesterol efflux capacity and arylesterase activity of HDL, as well as EL, were correlated with neither FMD nor NMD. EL was significantly negatively correlated with HDL-PL/HDL-apoA-I in HV, but not in MS patients, and with serum levels of small dense HDL containing apolipoprotein A-II in MS patients, but not in HV. We conclude that MS modulates the association between HDL and endothelial function, as well as between EL and HDL. HDL cholesterol efflux capacity and arylesterase activity, as well as EL serum levels, are not associated with endothelial function in HV or MS patients

    The PROVIT Study—Effects of Multispecies Probiotic Add-on Treatment on Metabolomics in Major Depressive Disorder—A Randomized, Placebo-Controlled Trial

    No full text
    The gut–brain axis plays a role in major depressive disorder (MDD). Gut-bacterial metabolites are suspected to reduce low-grade inflammation and influence brain function. Nevertheless, randomized, placebo-controlled probiotic intervention studies investigating metabolomic changes in patients with MDD are scarce. The PROVIT study (registered at clinicaltrials.com NCT03300440) aims to close this scientific gap. PROVIT was conducted as a randomized, single-center, double-blind, placebo-controlled multispecies probiotic intervention study in individuals with MDD (n = 57). In addition to clinical assessments, metabolomics analyses (1H Nuclear Magnetic Resonance Spectroscopy) of stool and serum, and microbiome analyses (16S rRNA sequencing) were performed. After 4 weeks of probiotic add-on therapy, no significant changes in serum samples were observed, whereas the probiotic groups’ (n = 28) stool metabolome shifted towards significantly higher concentrations of butyrate, alanine, valine, isoleucine, sarcosine, methylamine, and lysine. Gallic acid was significantly decreased in the probiotic group. In contrast, and as expected, no significant changes resulted in the stool metabolome of the placebo group. Strong correlations between bacterial species and significantly altered stool metabolites were obtained. In summary, the treatment with multispecies probiotics affects the stool metabolomic profile in patients with MDD, which sets the foundation for further elucidation of the mechanistic impact of probiotics on depression
    corecore