15 research outputs found

    Stratégies de modélisation et de commande des microsystèmes piézoélectriques à plusieurs degrés de liberté.

    Get PDF
    Piezoelectric actuators are among the most used tools in many applications at micro/nano-scale (micromanipulation,microassembly, micropositioning, etc). From a functional perspective, there exist mono-axis actuators(which are made to bend in one direction) and multi-axis actuators (which provide deflections in different directions).The popularity of piezoelectric actuators is especially due to their high resolution (nanometric resolution),the large bandwidth (greater than 1kHz possible), the low electrical power consumption, the high force density,the ease of integration in positioning systems, etc. However, piezoelectric actuators are characterized by hysteresisand creep nonlinearities, badly damped vibrations and they are sensitive to the variation of ambient conditions(especially to the temperature variation). In addition, multi-axis actuators exhibit cross-couplings betweentheir axis. This thesis proposes novel strategies for modeling and control of multi-axis piezoelectric actuators,with the aim to counteract the aforementionned problems. These strategies are grouped into two categories.The first category concerns feedback control techniques. These techniques are the most suitable to ensurethe robustness and a high level of precision for piezoelectric actuators. However, at the micro/nanoscale, thesetechniques are limited by the lack of enough physical space to install feedback sensors. The second categoryconcerns the feedforward control techniques. The main advantage of these techniques is related to the factthat, in feedforward control schemes, feedback sensors are not needed for tracking. This allows to achieve ahigh degree of packageability and the cost reduction. In this thesis, we first propose multivariable modelingand feedforward control techniques. Then, we analyse the effects of temperature variation on piezoelectricactuators and we propose feedforward and feedback control techniques for these effects. Finally, a feedbackstrategy based on decoupling techniques with an aim to reduce the order of feedback controllers for multi-axispiezoelectric actuators, is proposed. All these modeling and control strategies are experimentally applied on apiezoelectric tube actuator.Les actionneurs piézoélectriques font partie des outils les plus utilisés dans les applications à l’échelle micro/nano-métrique (micromanipulation, microassemblage, micropositionnement, etc). Du point de vue fonctionnel, on distingue les actionneurs mono-axe (permettant d’obtenir la déflection suivant une direction) et les actionneurs multi-axes (pouvant fléchir suivant plusieurs directions). La notoriété des actionneurs piézoélectriques est due à un certain nombre de performances telles qu’une large bande passante (plus du kHz possible), une très bonne résolution (de l’ordre du nanomètre), une faible consommation en énergie électrique, une grande densité de force, une facilité d’alimentation et d’intégration, etc. Cependant, ces actionneurs sont caractérisés par des non-linéarités fortes (hystérésis et la dérive lente), des oscillations mal-amorties, et sont sensibles à la variation des conditions ambiantes (en particulier à la variation de la température). Pour les actionneurs multi-axes, il s’ajoute un problème des couplages entre les différents axes de l’actionneur. Cette thèsepropose des stratégies innovantes de commande des actionneurs piézoélectriques multi-axes pour contrer les problèmes sus-mentionnés. Ces stratégies sont groupées en deux catégories. La première catégorie concerne les techniques de commande en boucle fermée. Ces techniques sont les plus adaptées pour garantir la robustesse et un niveau de précision élevée pour les actionneurs piézoélectriques. Cependant, à l’échelle micro/nanométrique, ces techniques sont limitées par un manque d’espace suffisant pour installer des capteurs de position.La deuxième catégorie concerne la commande en boucle ouverte dont l’intérêt majeur est lié au fait qu’il n’y a pas besoin de capteurs pour la commande, ce qui constitue un avantage en terme de coût et facilité d’intégration. Dans cette thèse, nous proposons d’abord les techniques de modélisation et de commande en boucle ouverte multivariables. Ensuite, nous faisons une analyse des effets de la température sur les actionneurs piézoélectriques et nous proposons des techniques de commande en boucle ouverte et en boucle fermée de ces effets. Enfin, une stratégie de commande en boucle fermée par découplage, visant à obtenir des correcteurs d’ordre réduit pour les actionneurs multi-axes est proposée. Toutes ces techniques sont vérifiées et appliquées expérimentalement à un actionneur piézoélectrique de type tube

    Modeling, identification and feedforward control of multivariable hysteresis by combining Bouc-Wen equations and the inverse multiplicative structure.

    No full text
    International audienceThis paper deals with the modeling, identification and feedforward control of hysteresis found in multi-degrees of freedom (DOF) piezoelectric actuators. One main characteristic couplings. To express such multivariable hysteresis, we propose to extend the previous Bouc-Wen hysteresis monovariable model used for 1-DOF actuators. Then we propose to combine the resulting multivariable model with the inverse multiplicative structure in order to derive a multivariable compensator that suppresses the direct and the coupling hysteresis. Experimental tests on a piezotube scanner demonstrate the efficiency of the proposed approach

    Blackstepping-based robust-adaptive control of a nonlinear 2-DOF piezoactuator.

    No full text
    International audienceThis paper deals with the control of a two degrees of freedom (2-DOF) piezoelectric actuator for precise positioning and which exhibits strong hysteresis nonlinearity and strong cross-couplings. To tackle the non linearity and the cross-couplings, we propose two decoupled models in which they are considered as (fictive) external disturbances which require proper characterization. Then, a backstepping technique is proposed to construct a robust controller that merges sliding-mode and adaptive schemes. Extensive experimental tests are finally carried out to prove the efficiency of the modeling and control technique proposed

    Presentation and characterization of novel thick-film PZT microactuators.

    No full text
    International audienceWe propose in this paper the characterization of a new generation of piezoelectric cantilevers called thick-films piezoelectric actuators. Based on the bonding and thinning process of a bulk PZT layer onto a silicon layer, these cantilevers can provide better static and dynamic performances compared to traditional piezocantilevers, additionally to the small dimensions

    Nonlinear black-box system identification through coevolutionary algorithms and radial basis function artificial neural networks

    Get PDF
    The present work deals with the application of coevolutionary algorithms and artificial neural networks to perform input selection and related parameter estimation for nonlinear black-box models in system identification. In order to decouple the resolution of the input selection and parameter estimation, we propose a problem decomposition formulation and solve it by a coevolutionary algorithm strategy. The novel methodology is successfully applied to identify a magnetorheological damper, a continuous polymerization reactor and a piezoelectric robotic micromanipulator. The results show that the method provides valid models in terms of accuracy and statistical properties. The main advantage of the method is the joint input and parameter estimation, towards automating a tedious and error prone procedure with global optimization algorithms

    Modeling and control strategies for multiaxis piezoelectric microsystems

    No full text
    Les actionneurs piézoélectriques font partie des outils les plus utilisés dans les applications à l'échelle micro/nano-métrique (micromanipulation, microassemblage, micropositionnement, etc…). Du point de vue fonctionnel, on distingue les actionneurs mono-axe (permettant d'obtenir la déflection suivant une direction) et les actionneurs multi-axes (pouvant fléchir suivant plusieurs directions). La notoriété des actionneurs piézoélectriques est due à un certain nombre de performances telles qu'une large bande passante (plus du kHz possible), une très bonne résolution (de l'ordre du nanomètre), une faible consommation en énergie électrique, une grande densité de force, une facilité d'alimentation et d'intégration, etc. Cependant, ces actionneurs sont caractérisés par des non-linéarités fortes (hystérésis et la dérive lente), des oscillations mal-amorties, et sont sensibles à la variation des conditions ambiantes (en particulier à la variation de la température). Pour les actionneurs multi-axes, il s'ajoute un problème des couplages entre les différents axes de l'actionneur. Cette thèse propose des stratégies innovantes de commande des actionneurs piézoélectriques multi-axes pour contrer les problèmes sus-mentionnés. Ces stratégies sont groupées en deux catégories. La première catégorie concerne les techniques de commande en boucle fermée. Ces techniques sont les plus adaptées pour garantir la robustesse et un niveau de précision élevé pour les actionneurs piézoélectriques. Cependant, à l'échelle micro/nano-métrique, ces techniques sont limitées par un manque d'espace suffisant pour installer des capteurs de position. La deuxième catégorie concerne la commande en boucle ouverte dont l'intérêt majeur est lié au fait qu'il n'y a pas besoin de capteurs pour la commande, ce qui constitue un avantage en terme de coût et facilité d'intégration. Dans cette thèse, nous proposons d'abord les techniques de modélisation et de commande en boucle ouverte multivariables. Ensuite, nous faisons une analyse des effets de la température sur les actionneurs piézoélectriques et nous proposons des techniques de commande en boucle ouverte et en boucle fermée de ces effets. Enfin, une stratégie de commande en boucle fermée par découplage, visant à obtenir des correcteurs d'ordre réduit pour les actionneurs multi-axes est proposée. Toutes ces techniques sont vérifiées et appliquées expérimentalement à un actionneur piézoélectrique de type tube.Piezoelectric actuators are among the most used tools in many applications at micro/nano-scale (micromanipulation,microassembly, micropositioning, etc). From a functional perspective, there exist mono-axis actuators(which are made to bend in one direction) and multi-axis actuators (which provide deflections in different directions).The popularity of piezoelectric actuators is especially due to their high resolution (nanometric resolution),the large bandwidth (greater than 1kHz possible), the low electrical power consumption, the high force density,the ease of integration in positioning systems, etc. However, piezoelectric actuators are characterized by hysteresisand creep nonlinearities, badly damped vibrations and they are sensitive to the variation of ambient conditions(especially to the temperature variation). In addition, multi-axis actuators exhibit cross-couplings betweentheir axis. This thesis proposes novel strategies for modeling and control of multi-axis piezoelectric actuators,with the aim to counteract the aforementionned problems. These strategies are grouped into two categories.The first category concerns feedback control techniques. These techniques are the most suitable to ensurethe robustness and a high level of precision for piezoelectric actuators. However, at the micro/nanoscale, thesetechniques are limited by the lack of enough physical space to install feedback sensors. The second categoryconcerns the feedforward control techniques. The main advantage of these techniques is related to the factthat, in feedforward control schemes, feedback sensors are not needed for tracking. This allows to achieve ahigh degree of packageability and the cost reduction. In this thesis, we first propose multivariable modelingand feedforward control techniques. Then, we analyse the effects of temperature variation on piezoelectricactuators and we propose feedforward and feedback control techniques for these effects. Finally, a feedbackstrategy based on decoupling techniques with an aim to reduce the order of feedback controllers for multi-axispiezoelectric actuators, is proposed. All these modeling and control strategies are experimentally applied on apiezoelectric tube actuator

    Bouc--Wen Modeling and Feedforward Control of Multivariable Hysteresis in Piezoelectric Systems: Application to a 3-DoF Piezotube Scanner.

    No full text
    International audienceThis paper is concerned with multivariable coupled hysteretic systems. The traditional Bouc-Wen monovariable hysteresis model devoted to one degrees of freedom (DoF) actuated systems is extended to model the hysteresis in systems with multiple DoF which typify strong cross-couplings. The proposed approach is able to model and to compensate for known hysteresis nonlinearities which affect smart materials. First, after presenting the new multivariable hysteresis Bouc-Wen model, a procedure ofidentification of its parameters is proposed. Then, we propose a multivariable compensator for the hysteresis. The compensator is based on the combination of the inverse multiplicative structure with the model which permits to avoid additional calculation of its parameters. Such advantage is essential when the number ofDoF is high. All along the paper, the cases of under, over and fully actuated hysteretic systems are discussed. Finally, the proposedmethod is used to model and to compensate for the hysteresis in a three DoF piezoelectric tube actuator. The experimental results demonstrate its efficiency to linearize the hysteresis in the directtransfers and to minimize the hysteresis of the cross-couplings

    Multivariable Generalized Bouc-Wen modeling, identification and feedforward control and its application to multi-DoF piezoelectric actuators.

    No full text
    International audienceIn the literature, the generalized Bouc-Wen model can track precisely asymmetric hysteresis nonlinearity. In this paper, we propose to extend this generalized model to multivariable hysteresis model that can track the nonlinearities in multi-degrees of freedom (multi-DoF) hysteretic actuated systems. In particular, these systems are typified by strong hysteresis couplings. Then, a method of identification of the multivariable hysteresis model is proposed. Finally, based on the inverse multiplicative structure, we propose a multivariable feedforward compensator of the nonlinearity. The proposed approach has been applied to a multi-DoF piezoelectric tube (piezotube) used in scanning probe microscopy and the experimental verification demonstrated its validity in terms of model precision and compensation efficiency.Feedforward Control, Multi-Degrees of Freedom Systems, Asymmetric Hysteresis, Couplings, Generalized Bouc-Wen Model

    Control of a Piezoelectric Actuator Using a Bounded-Adaptive Backstepping Scheme and Sliding-Mode Observer

    No full text
    International audienceThe present paper deals with the motion control of a piezoelectric cantilevered actuator. The motion behavior of the piezoelectric cantilever is affected by two main parasitic effects, the hysteresis and creep effects, which are considered as a generalized disturbance.Additionally, cantilevers's position is the only available measured state. The latter operational scenario reveals that the trajectory-tracking or regulation problem is a non-obvious task. Prior to the controller design, we have focused on the estimation of the velocity using a sliding-mode observer (SMO) in order to avoid the numerical derivative. On the other hand, the control design takes into account the limited response of the control input (bounded states) and it is obtained using the Backstepping framework assuring the stability of origin. Numerical simulations are _rst presented to verify the efficiency of the observer and controller algorithm, showing that the control objective is fulfilled. The experimental tests were carried out to validate and evaluated the control strategy
    corecore