10 research outputs found

    Influence of nano wollastonite on physical, mechanical and morphological properties of gypsum composites manufactured from bagasse

    Get PDF
    We investigated the effect of adding nano-wollastonite on the physical, mechanical and morphological properties of gypsum Composites. The ratio percentage of bagasse mixing as lignocellulosic material with gypsum at three levels (85:15; 75:25; 65:35) and nano-wollastonite at three levels of 0 %, 5 % and 10 %. Specimens were prepared according to the ISO 11925 specifications for the fire resistance (weight loss) properties and according to the DIN EN 634-1: 1195-04 specifications for the mechanical and physical properties. Scanning Electron Microscopy (SEM) were also used to study the properties of composite morphology and distribution of samples. The results showed that by increasing the amount of nano wollastonite, physical and mechanical properties improved. The MOR, MOE and IB of boards decreased with increased bagasse usage amount, and its maximum value was obtained in using 15 % bagasse. The results also showed that increasing the amount of bagasse in boards caused a significant increase in the TS of the boards. The results from microscopic images showed that the optimal level of nano-wollastonite can fill the empty holes and create a uniform structure, thereby improving the properties of the boards

    Effect of weathering on physical and mechanical properties of hybrid nanocomposite based on polyethylene, woodflour and nanoclay

    Get PDF
    Wood plastic composites have received increasing attention during the last decades, because of many advantages related to their use. However the durability of Wood plastic composites after ultraviolet exposure has become a concern. In this research, hybrid nanocomposites of polyethylene and woodflour with different concentrations of nanoclay were fabricated using melt compounding followed by injection molding. Specimens were exposed for 2000 h to ultraviolet radiation and moisture cycling in a laboratory weathering device to simulate the effects of exposure to sunlight and rain. Physical and mechanical properties of the nanocomposites were evaluated, before and after weathering. The results indicated that the water absorption of wood plastic composites increased after weathering but nanoclay reduced the intensity of weathering to some extent, through decreasing of water absorption. Also results showed that weathering decreased modulus of elasticity values, however good dispersion of clay layers resulted in fewer drop of modulus of elasticity values. Fourier transform infrared spectroscopy showed that lowest carbonyl index is related to the nano wood plastic composites with 2wt% nanoclay. Also X-Ray diffraction patterns revealed that intercalation morphology has been formed for nano particles

    Evaluation of the Bending Strength, Impact Strength, and Morphological Properties of Wheat Straw Fiber/Paper Mill Sludge/Polypropylene Composites

    No full text
    Composite production of polypropylene polymers was considered in this work as the matrix, filled with the fiber of wheat straw and paper mill sludge; different ratios were evaluated relative to their potential as reinforcement materials. Maleic anhydride polypropylene (MAAP) was used at 3% by weight. The bending modulus of elasticity of the composites significantly increased with both types of filler. The highest bending modulus of the composites was found with 40% of paper mill sludge. Using 40% wheat straw fiber decreased bending strength, but the addition of paper mill sludge increased bending strength. The highest bending strength of the composites related to polypropylene/10% of wheat straw fiber and 30% of paper mill sludge. In terms of impact strength, the use of paper mill sludge had a higher impact on strength than wheat straw fiber composites. The inclusion of MAPP improved the mechanical properties of all composites. Scanning electron micrographs showed that the composite paper mill sludge improved the adhesion and dispersion of the filler (paper mill sludge/fiber paper instead of wheat) in the matrix

    Effect of weathering on physical and mechanical properties of hybrid nanocomposite based on polyethylene, woodflour and nanoclay

    Get PDF
    Wood plastic composites have received increasing attention during the last decades, because of many advantages related to their use. However the durability of Wood plastic composites after ultraviolet exposure has become a concern. In this research, hybrid nanocomposites of polyethylene and woodflour with different concentrations of nanoclay were fabricated using melt compounding followed by injection molding. Specimens were exposed for 2000 h to ultraviolet radiation and moisture cycling in a laboratory weathering device to simulate the effects of exposure to sunlight and rain. Physical and mechanical properties of the nanocomposites were evaluated, before and after weathering. The results indicated that the water absorption of wood plastic composites increased after weathering but nanoclay reduced the intensity of weathering to some extent, through decreasing of water absorption. Also results showed that weathering decreased modulus of elasticity values, however good dispersion of clay layers resulted in fewer drop of modulus of elasticity values. Fourier transform infrared spectroscopy showed that lowest carbonyl index is related to the nano wood plastic composites with 2wt% nanoclay. Also X-Ray diffraction patterns revealed that intercalation morphology has been formed for nano particles

    Effect of weathering on the properties of hybrid composite based on polyethylene, woodflour, and nanoclay

    No full text
    Hybrid composites of polyethylene/wood flour/nanoclay with different concentrations of nanoclay were fabricated using melt compounding followed by injection molding. Composites were weathered in a xenon-arc type accelerated weathering apparatus for 2000 h. Physical properties of the composites were evaluated by colorimetery and water absorption before and after weathering. Changes in surface chemistry were monitored using spectroscopic techniques. The results indicated that water absorption of the composites increased after weathering, but nanoclay can reduce the intensity of weathering to some extent by decreasing water absorption. Weathering increased the degree of color change and lightness of the samples; however, the lightness of the samples containing nanoclay was less than that of neat wood-plastic composites. Fourier transform infrared spectroscopy revealed a lower carbonyl index of composites containing nanoclay. X-ray diffraction patterns revealed that the nanocomposites formed were intercalated. The order of intercalation for samples containing 2 wt% nanoclay was higher than that of 4 wt% at the same maleic anhydride grafted polyethylene content, due to some agglomeration of the nanoclay

    Influence of nano wollastonite on physical, mechanical and morphological properties of gypsum composites manufactured from bagasse

    No full text
    We investigated the effect of adding nano-wollastonite on the physical, mechanical and morphological properties of gypsum Composites. The ratio percentage of bagasse mixing aslignocellulosic material with gypsum at three levels (85:15; 75:25;65:35) and nano-wollastonite at three levels of 0 %, 5 % and 10 %. Spec-imens were prepared according to the standards specifications for the fire resistance (weight loss), mechani-cal and physical properties. Scanning Electron Microscopy (SEM) were also used to study the properties of compositemorphology and distribution of samples. Theresults showed that by increasing the amount of nano wollastonite, physical and mechanical properties improved. The MOR, MOE and IB of boards decreased with increased bagasse usage amount, and its maximum value was obtained inusing 15 % bagasse. The results also showed that increasing theamount of bagasse in boards caused a significant increase in theTS of the boards. The results from microscopicimagesshowed that the optimal level of nano-wollastonite can fill the emptyholes and create a uniform structure, thereby improving the propertiesof the board

    Thermal Analysis and Morphological Characterization of Thermoplastic Composites Filled with Almond Shell Flour/Montmorillonite

    No full text
    The main objective of this research was to study the potential uses of almond shell flour (ASF) in the production of thermoplastic composites containing montmorillonite (MMT). Thirty, 35, and 40 wt% ASF was used, and 2.0 wt% maleic anhydride-grafted polypropylene was used as the compatibilizer. Two levels of MMT nanoclay, 2.5 and 5.0 wt%, were mixed with polypropylene (PP). The effects of MMT on the thermal properties of the blended composites were evaluated using thermogravimetric analysis (TGA), morphological characterization, scanning electron microscopy (SEM), and X-ray diffraction (XRD). The XRD data showed that the relative intercalation of the composites with 2.5 wt% MMT was higher than that of the 5.0 wt% nanoclay composites. The TGA results indicated that by increasing the MMT percentage, the degradation temperature and the thermal stability were enhanced. The MMT exhibited better dispersion in the clay layers of the polymer-matrix composites when increased from 2.5 to 5.0 wt%, and at the 5.0 wt% MMT loading, the size of MMT became larger. The total weight loss of the ASF/PP/MMT composite decreased as the filler content increased, and the thermal stability increased as the MMT content increased

    Thermal Analysis and Morphological Characterization of Thermoplastic Composites Filled with Almond Shell Flour/Montmorillonite

    No full text
    The main objective of this research was to study the potential uses of almond shell flour (ASF) in the production of thermoplastic composites containing montmorillonite (MMT). Thirty, 35, and 40 wt% ASF was used, and 2.0 wt% maleic anhydride-grafted polypropylene was used as the compatibilizer. Two levels of MMT nanoclay, 2.5 and 5.0 wt%, were mixed with polypropylene (PP). The effects of MMT on the thermal properties of the blended composites were evaluated using thermogravimetric analysis (TGA), morphological characterization, scanning electron microscopy (SEM), and X-ray diffraction (XRD). The XRD data showed that the relative intercalation of the composites with 2.5 wt% MMT was higher than that of the 5.0 wt% nanoclay composites. The TGA results indicated that by increasing the MMT percentage, the degradation temperature and the thermal stability were enhanced. The MMT exhibited better dispersion in the clay layers of the polymer-matrix composites when increased from 2.5 to 5.0 wt%, and at the 5.0 wt% MMT loading, the size of MMT became larger. The total weight loss of the ASF/PP/MMT composite decreased as the filler content increased, and the thermal stability increased as the MMT content increased

    Investigation on the properties of oriented strand boards (OSB) made from mixture ten- year- old poplar clones

    No full text
    In this study, the effects of mat moisture content and press temperature on physical and mechanical properties of three layered oriented strand boards were evaluated. Two levels of mat moisture content 7% and 10% and three levels of press temperature 180 Ëšc , 200 Ëšc and 220 Ëšc were applied and 12 mm in nominal thickness laboratory boards were made from mixture of three clones of ten-year-old hybrid poplar ( populous euramericana vernirubensis, p. e. I-214, P. e. 561/41) while the strands on the surface layers are aligned in the long direction of the board and the middle layer strands are cross aligned to the surface layers. In all treatments, board targeted density of 0/7 g/cm3 and press time of 8 min and phenol-formaldehyde resin (PF) content of 7% based on the oven dry weight of the strands were held constant. The mechanical and physical properties of the boards were measured as defined in relevant European standards EN 300 for OSB/1 and OSB/2. Overall results showed that all boards made from above mentioned conditions exceed the EN 300 standards for MOR, MOE, IB and TS24. The bending properties (MOR and MOE) of boards were significantly improved as the mat moisture content increased from 7 to 10%. The highest MOR was achieved at 10% mat moisture content and 220 Ëšc press temperature and the highest MOE was achieved at 10% mat moisture content and 180 Ëšc press temperature. The Modulus of Rupture (MOR) and Thickness swelling (TS24) were significantly improved as the press temperature increased from 180 Ëšc to 220 Ëšc. The lowest TS24 was achieved at 7% mat moisture content and 220 Ëšc press temperature and the highest IB was achieved at 7% mat moisture content and 200 Ëšc press temperature
    corecore