5,408 research outputs found

    Negative differential Rashba effect in two-dimensional hole systems

    Full text link
    We demonstrate experimentally and theoretically that two-dimensional (2D) heavy hole systems in single heterostructures exhibit a \emph{decrease} in spin-orbit interaction-induced spin splitting with an increase in perpendicular electric field. Using front and back gates, we measure the spin splitting as a function of applied electric field while keeping the density constant. Our results are in contrast to the more familiar case of 2D electrons where spin splitting increases with electric field.Comment: 3 pages, 3 figures. To appear in AP

    Fractional extracts of Azadirachta indica leaf affect spermiogram, testosterone profile, and testis histology of rabbit bucks

    Get PDF
    The effect of fractions from a crude extract of Azadirachta indica leaves on spermatogenesis, testicular histology and testosterone concentration of New Zealand White rabbits were evaluated in this study. Twenty-five matured male New Zealand White rabbits were used for this study and were randomly assigned to five groups (A, B, C, D, and E). Group A served as the control and was administered distilled water (0.5ml); while groups B, C, D and E served as the hexane, chloroform, ethyl acetate, and butanol treated groups, respectively at the same dosage of 300 mg/kg. Semen samples were collected using an artificial vagina weekly for twelve weeks and were evaluated for volume, colour, motility, concentration, percentage live-dead ratio and morphological abnormalities. A blood sample (2ml) was also collected from each buck through venipuncture of the ear vein three times at regular intervals for the determination of testosterone concentration. Two bucks from each group were humanely sacrificed at the end of the experiment for testicular histology. Significantly lower (p<0.05) sperm motility, higher dead sperm cells, sperm abnormalities, degenerative changes, depletion and vacuolation of spermatogenic cell layers were observed in treatment group C at the end of the experiment. The present study has shown that the chloroform fraction of methanolic crude Azadirachta indica (neem) leaves extract is detrimental to sperm cells and testicular histology

    Etudes dosimétriques des sources I125I^{125} utilisant les simulations Monte-Carlo GATE sur grille de calcul EGEE

    Get PDF
    PCSV, présenté par C. Thiam, transparents sur site, résuméLa méthode de calcul Monte Carlo est reconnue aujourd'hui comme l'algorithme pouvant modéliser au plus près les phénomènes physiques liés aux dépôts d'énergie dans un milieu. Il est donc intéressent d'utiliser cette méthode dans la planification de traitement du cancer par rayonnement, les systèmes de planification de traitement (TPS) existant étant limités dans la précision des calculs pour certains cas spécifiques. Dans cette approche nous nous intéressons à la validation du code de calcul Monte Carlo GATE (basses énergies) pour les applications dosimétriques en physique médicale. Nous avons modélisé avec GATE des modèles de sources I125 sous forme de grains couramment utilisées en curiethérapie (les grains 2301 B.M.I., Symmetra UroMed/Bebig). Les caractéristiques de ces sources ont été simulées en respectant les extrémités soudées, la distribution radioactive, les matériaux et le rayonnement des spectres d'énergies. Pour effectuer nos calculs de dose, nous nous sommes référé aux travaux du groupe de travail « Task Group 43 » de l'American Association of Physicists in Medicine (A.A.P.M.) datant de 1995 et mis à jour en 2004. Les fonctions de dose radiale et d'anisotropie ainsi que la constante de débit de dose définissant les caractéristiques dosimétriques de ces sources ont été calculées avec différentes versions de GATE. Les résultats obtenus, en comparaison avec d'autres codes Monte Carlo (PTRAN, MCTP) ou mesures par thermoluminescence (TLD), sont en bon accord avec les valeurs publiées dans la littérature et par les travaux du TG 43. Les Simulations Monte Carlo GATE nécessitent en général plusieurs heures de calculs. Afin de réduire ces temps, nos simulations GATE ont été parallélisées sur une infrastructure de grille de calcul mise en place par le projet EGEE (Enabling Grids for E-sciencE). Les résultats obtenus par cette technique sont très prometteurs. Le temps nécessaire au calcul dans le cas des applications dosimétriques a été réduit d'un facteur 3

    Rainbow domination and related problems on some classes of perfect graphs

    Full text link
    Let k∈Nk \in \mathbb{N} and let GG be a graph. A function f:V(G)→2[k]f: V(G) \rightarrow 2^{[k]} is a rainbow function if, for every vertex xx with f(x)=∅f(x)=\emptyset, f(N(x))=[k]f(N(x)) =[k]. The rainbow domination number γkr(G)\gamma_{kr}(G) is the minimum of ∑x∈V(G)∣f(x)∣\sum_{x \in V(G)} |f(x)| over all rainbow functions. We investigate the rainbow domination problem for some classes of perfect graphs

    Stochastic approach to inflation II: classicality, coarse-graining and noises

    Full text link
    In this work we generalize a previously developed semiclassical approach to inflation, devoted to the analysis of the effective dynamics of coarse-grained fields, which are essential to the stochastic approach to inflation. We consider general non-trivial momentum distributions when defining these fields. The use of smooth cutoffs in momentum space avoids highly singular quantum noise correlations and allows us to consider the whole quantum noise sector when analyzing the conditions for the validity of an effective classical dynamical description of the coarse-grained field. We show that the weighting of modes has physical consequences, and thus cannot be considered as a mere mathematical artifact. In particular we discuss the exponential inflationary scenario and show that colored noises appear with cutoff dependent amplitudes.Comment: 18 pages, revtex, no figure

    Chaos in Time Dependent Variational Approximations to Quantum Dynamics

    Full text link
    Dynamical chaos has recently been shown to exist in the Gaussian approximation in quantum mechanics and in the self-consistent mean field approach to studying the dynamics of quantum fields. In this study, we first show that any variational approximation to the dynamics of a quantum system based on the Dirac action principle leads to a classical Hamiltonian dynamics for the variational parameters. Since this Hamiltonian is generically nonlinear and nonintegrable, the dynamics thus generated can be chaotic, in distinction to the exact quantum evolution. We then restrict attention to a system of two biquadratically coupled quantum oscillators and study two variational schemes, the leading order large N (four canonical variables) and Hartree (six canonical variables) approximations. The chaos seen in the approximate dynamics is an artifact of the approximations: this is demonstrated by the fact that its onset occurs on the same characteristic time scale as the breakdown of the approximations when compared to numerical solutions of the time-dependent Schrodinger equation.Comment: 10 pages (12 figures), RevTeX (plus macro), uses epsf, minor typos correcte
    • …
    corecore