57 research outputs found

    Local strain distribution in real three-dimensional alveolar geometries

    Get PDF
    Mechanical ventilation is not only a life saving treatment but can also cause negative side effects. One of the main complications is inflammation caused by overstretching of the alveolar tissue. Previously, studies investigated either global strains or looked into which states lead to inflammatory reactions in cell cultures. However, the connection between the global deformation, of a tissue strip or the whole organ, and the strains reaching the single cells lining the alveolar walls is unknown and respective studies are still missing. The main reason for this is most likely the complex, sponge-like alveolar geometry, whose three-dimensional details have been unknown until recently. Utilizing synchrotron-based X-ray tomographic microscopy, we were able to generate real and detailed three-dimensional alveolar geometries on which we have performed finite-element simulations. This allowed us to determine, for the first time, a three-dimensional strain state within the alveolar wall. Briefly, precision-cut lung slices, prepared from isolated rat lungs, were scanned and segmented to provide a three-dimensional geometry. This was then discretized using newly developed tetrahedral elements. The main conclusions of this study are that the local strain in the alveolar wall can reach a multiple of the value of the global strain, for our simulations up to four times as high and that thin structures obviously cause hotspots that are especially at risk of overstretching

    The total number of acini remains constant throughout postnatal rat lung development.

    Get PDF
    The pulmonary airways are subdivided into conducting and gas-exchanging airways. The small tree of gas-exchanging airways which is fed by the most distal conducting airway represents an acinus. Very little is known about the development of the number of acini. The goal of this study was to estimate their number throughout rat postnatal development. Right middle rat lung lobes were obtained at postnatal day 4-60, stained with heavy metals, paraffin embedded, and scanned by synchrotron radiation-based X-ray tomographic microscopy or imaged with micro computed tomography after critical point drying. The acini were counted by detection of the transitional bronchioles [bronchioalveolar duct junction (BADJ)] by using morphological criteria (thickness of the walls of airways and appearance of alveoli) during examination of the resulting three-dimensional (3D) image stacks. Between postnatal days 4-60, the number of acini per lung remained constant (5,840 ± 547 acini), but their volume increased significantly. We concluded that the acini are formed before the end of the saccular stage (before postnatal day 4) and that the developmental increase of the lung volume is achieved by an increase of the acinar volume and not by an increase of their number. Furthermore, our results propose that the bronchioalveolar stem cells, which are residing in the BADJ, are as constant in their location as the BADJ itself

    Meeting nutritional targets of critically ill patients by combined enteral and parenteral nutrition: review and rationale for the EFFORTcombo trial.

    Get PDF
    While medical nutrition therapy is an essential part of the care for critically ill patients, uncertainty exists about the right form, dosage, timing and route in relation to the phases of critical illness. As enteral nutrition (EN) is often withheld or interrupted during the intensive care unit (ICU) stay, combined EN and parenteral nutrition (PN) may represent an effective and safe option to achieve energy and protein goals as recommended by international guidelines. We hypothesise that critically ill patients at high nutritional risk may benefit from such a combined approach during their stay on the ICU. Therefore, we aim to test if an early combination of EN and high-protein PN (EN+PN) is effective in reaching energy and protein goals in patients at high nutritional risk, while avoiding overfeeding. This approach will be tested in the here-presented EFFORTcombo trial. Nutritionally high-risk ICU patients will be randomised to either high (≥2·2 g/kg per d) or low protein (≤1·2 g/kg per d). In the high protein group, the patients will receive EN+PN; in the low protein group, patients will be given EN alone. EN will be started in accordance with international guidelines in both groups. Efforts will be made to reach nutrition goals within 48-96 h. The efficacy of the proposed nutritional strategy will be tested as an innovative approach by functional outcomes at ICU and hospital discharge, as well as at a 6-month follow-up

    Radiation dose optimized lateral expansion of the field of view in synchrotron radiation X-ray tomographic microscopy

    Get PDF
    Increasing the lateral field of view of tomography-based imaging methods greatly increases the acquisition time. This article presents scanning protocols to obtain high-resolution tomographic scans with large lateral field of view at greatly decreased acquisition time and thus reduced radiation dose while resulting in high-quality three-dimensional tomographic datasets

    Airspace Diameter Map-A Quantitative Measurement of All Pulmonary Airspaces to Characterize Structural Lung Diseases.

    Get PDF
    (1) Background: Stereological estimations significantly contributed to our understanding of lung anatomy and physiology. Taking stereology fully 3-dimensional facilitates the estimation of novel parameters. (2) Methods: We developed a protocol for the analysis of all airspaces of an entire lung. It includes (i) high-resolution synchrotron radiation-based X-ray tomographic microscopy, (ii) image segmentation using the free machine-learning tool Ilastik and ImageJ, and (iii) calculation of the airspace diameter distribution using a diameter map function. To evaluate the new pipeline, lungs from adult mice with cystic fibrosis (CF)-like lung disease (βENaC-transgenic mice) or mice with elastase-induced emphysema were compared to healthy controls. (3) Results: We were able to show the distribution of airspace diameters throughout the entire lung, as well as separately for the conducting airways and the gas exchange area. In the pathobiological context, we observed an irregular widening of parenchymal airspaces in mice with CF-like lung disease and elastase-induced emphysema. Comparable results were obtained when analyzing lungs imaged with μCT, sugges-ting that our pipeline is applicable to different kinds of imaging modalities. (4) Conclusions: We conclude that the airspace diameter map is well suited for a detailed analysis of unevenly distri-buted structural alterations in chronic muco-obstructive lung diseases such as cystic fibrosis and COPD

    Multimodal imaging for the detection of sub-micron particles in the gas-exchange region of the mammalian lung

    Full text link
    The deposition sites of inhaled aerosols in the gas-exchange region of the lung represent one of the key parameters needed for the understanding of the interaction between these particles and lung tissue. In order to develop a method for three-dimensional imaging of sub-micron particles in lung tissue we applied gold particles (200 and 700 nm) to rat lungs by intratracheal instillation. The samples were scanned at TOMCAT, the beamline for TOmographic Microscopy and Coherent rAdiology experimenTs at the Swiss Light Source. The 200 nm particles were slightly below the detection capabilities of TOMCAT. Therefore, their localization was obtained only by electron microscopy. At a voxel size of 350 nm we observed single and clustered gold particles (700 nm) in alveoli, alveolar ducts, and small bronchioli. The locations of the gold particles were veri_ed by transmission electron microscopical serial sections. We observed a very high correlation between these two imaging modalities. We conclude that a combination of x-ray tomographic microscopy and electron microscopy allows the full unrestricted 3D localization of particles smaller than the resolution of x-ray tomographic microscopy. We are planning to use this method for the verification of the simulation of particle deposition in the airway tree

    Extubation after breathing trials with automatic tube compensation, T-tube, or pressure support ventilation

    Full text link
    BACKGROUND: Automatic tube compensation (ATC) is a new option to compensate for the pressure drop across the endotracheal or tracheostomy tube (ETT), especially during ventilator-assisted spontaneous breathing. While several benefits of this mode have so far been documented, ATC has not yet been used to predict whether the ETT could be safely removed at the end of weaning, from mechanical ventilation. METHODS: We undertook a systematic trial using a randomized block design. During a 2-year period, all eligible patients of a medical intensive care unit were treated with ATC, conventional pressure support ventilation (PSV, 5 cmH2O), or T-tube for 2-h. Tolerance of the breathing trial served as a basis for the decision to remove the endotracheal tube. Extubation failure was considered if reintubation was necessary or if the patient required non-invasive ventilatory assistance (both within 48 h). RESULTS AND CONCLUSIONS: After the inclusion of 90 patients (30 per group) we did not observe significant differences between the modes. Twelve patients failed the initial weaning trial. However, half of the patients who appeared to fail the spontaneous breathing trial on the T-tube, PSV, or both, were successfully extubated after a succeeding trial with ATC. Extubation was thus withheld from four and three of these patients while breathing with PSV or the T-tube, respectively, but to any patient breathing with ATC. It seems that ATC can be used as an alternative mode during the final phase of weaning from mechanical ventilation. Furthermore, this study may promote a larger multicenter trial on weaning with ATC compared with standard modes
    • …
    corecore