1,376 research outputs found

    Digital Demodulator for BFSK waveform based upon Correlator and Differentiator Systems

    Get PDF
    The present article relates in general to digital demodulation of Binary Frequency Shift Keying (BFSK waveform) . New processing methods for demodulating the BFSK-signals are proposed here. Based on Sampler Correlator, the hardware consumption for the proposed techniques is reduced in comparison with other reported. Theoretical details concerning limits of applicability are also given by closed-form expressions. Simulation experiments are illustrated to validate the overall performance

    Monocular Real-time Hand Shape and Motion Capture using Multi-modal Data

    Get PDF
    We present a novel method for monocular hand shape and pose estimation at unprecedented runtime performance of 100fps and at state-of-the-art accuracy. This is enabled by a new learning based architecture designed such that it can make use of all the sources of available hand training data: image data with either 2D or 3D annotations, as well as stand-alone 3D animations without corresponding image data. It features a 3D hand joint detection module and an inverse kinematics module which regresses not only 3D joint positions but also maps them to joint rotations in a single feed-forward pass. This output makes the method more directly usable for applications in computer vision and graphics compared to only regressing 3D joint positions. We demonstrate that our architectural design leads to a significant quantitative and qualitative improvement over the state of the art on several challenging benchmarks. Our model is publicly available for future research

    Structural basis for the antagonistic roles of RNP-8 and GLD-3 in GLD-2 poly(A)-polymerase activity

    No full text
    Cytoplasmic polyadenylation drives the translational activation of specific mRNAs in early metazoan development and is performed by distinct complexes that share the same catalytic poly(A)-polymerase subunit, GLD-2. The activity and specificity of GLD-2 depend on its binding partners. In Caenorhabditis elegans, GLD-2 promotes spermatogenesis when bound to GLD-3 and oogenesis when bound to RNP-8. GLD-3 and RNP-8 antagonize each other and compete for GLD-2 binding. Following up on our previous mechanistic studies of GLD-2-GLD-3, we report here the 2.5 resolution structure and biochemical characterization of a GLD-2-RNP-8core complex. In the structure, RNP-8 embraces the poly(A)-polymerase, docking onto several conserved hydrophobic hotspots present on the GLD-2 surface. RNP-8 stabilizes GLD-2 and indirectly stimulates polyadenylation. RNP-8 has a different amino-acid sequence and structure as compared to GLD-3. Yet, it binds the same surfaces of GLD-2 by forming alternative interactions, rationalizing the remarkable versatility of GLD-2 complexes

    Virtual pathway explorer (viPEr) and pathway enrichment analysis tool (PEANuT): creating and analyzing focus networks to identify cross-talk between molecules and pathways

    No full text
    Background: Interpreting large-scale studies from microarrays or next-generation sequencing for further experimental testing remains one of the major challenges in quantitative biology. Combining expression with physical or genetic interaction data has already been successfully applied to enhance knowledge from all types of high-throughput studies. Yet, toolboxes for navigating and understanding even small gene or protein networks are poorly developed. Results: We introduce two Cytoscape plug-ins, which support the generation and interpretation of experiment-based interaction networks. The virtual pathway explorer viPEr creates so-called focus networks by joining a list of experimentally determined genes with the interactome of a specific organism. viPEr calculates all paths between two or more user-selected nodes, or explores the neighborhood of a single selected node. Numerical values from expression studies assigned to the nodes serve to score identified paths. The pathway enrichment analysis tool PEANuT annotates networks with pathway information from various sources and calculates enriched pathways between a focus and a background network. Using time series expression data of atorvastatin treated primary hepatocytes from six patients, we demonstrate the handling and applicability of viPEr and PEANuT. Based on our investigations using viPEr and PEANuT, we suggest a role of the FoxA1/A2/A3 transcriptional network in the cellular response to atorvastatin treatment. Moreover, we find an enrichment of metabolic and cancer pathways in the Fox transcriptional network and demonstrate a patient-specific reaction to the drug. Conclusions: The Cytoscape plug-in viPEr integrates -omics data with interactome data. It supports the interpretation and navigation of large-scale datasets by creating focus networks, facilitating mechanistic predictions from -omics studies. PEANuT provides an up-front method to identify underlying biological principles by calculating enriched pathways in focus networks

    Leptin promotes meiotic progression and developmental capacity of bovine oocytes via cumulus cell-independent and -dependent mechanisms

    Get PDF
    Leptin has been shown to exert positive effects during the maturation of bovine oocytes, influencing blastocyst development, apoptosis, and the transcript levels of developmentally important genes. The present study was conducted to characterize further the mechanisms of leptin action on oocytes and the role of cumulus cells (CCs) in this context. In the first series of experiments, cumulus-oocyte complexes (COCs) were matured in serum-free medium that contained 0, 1 or 10 ng/ml leptin or in medium that was supplemented with 10% (v/v) estrus cow serum (ECS). Leptin concentrations of 1 and 10 ng/ml stimulated the meiotic progression of oocytes. Moreover, TUNEL staining demonstrated that these leptin doses reduced the proportion of apoptotic CCs. In the second series of experiments, COCs or denuded oocytes (DOs) were matured in the presence of 0 or 10 ng/ml leptin. The percentages of COCs and DOs with extruded polar bodies were increased by leptin. In contrast, positive effects of leptin on fertilization rates and blastocyst development were only observed after treatment of COCs but not of DOs. Leptin treatment of COCs consistently enhanced blastocyst development even after parthenogenetic activation of oocytes or after the removal of CCs before fertilization. The proportion of polyspermic oocytes was not affected by leptin treatment or oocyte denudation. In the third series of experiments, COCs were matured in the presence of 0, 1 or 10 ng/ml leptin. The transcript levels of specific genes were determined by reverse transcriptase-quantitative PCR (RT-qPCR) analysis of cumulus cells and single oocytes. Leptin treatment increased the levels of FAS, FASLG, and STAT3 transcripts in oocytes, but did not affect the LEPR, BAX, and BIRC4 mRNA concentrations. In cumulus cells, leptin treatment increased the mRNA levels for LEPR, STAT3, BAX, BIRC4, and FAS, but did not alter FASLG mRNA abundance. In conclusion, leptin differentially regulates gene expression in oocytes and cumulus cells. Moreover, leptin enhances both oocyte maturation and developmental capacity via cumulus cell-independent and -dependent mechanisms

    1D numerical and experimental investigations of an ultralean pre-chamber engine

    Get PDF
    In recent years, lean-burn gasoline Spark-Ignition (SI) engines have been a major subject of investigations. With this solution, in fact, it is possible to simultaneously reduce NOx raw emissions and fuel consumption due to decreased heat losses, higher thermodynamic efficiency, and enhanced knock resistance. However, the real applicability of this technique is strongly limited by the increase in cyclic variation and the occurrence of misfire, which are typical for the combustion of homogeneous lean air/fuel mixtures. The employment of a Pre-Chamber (PC), in which the combustion begins before proceeding in the main combustion chamber, has already shown the capability of significantly extending the lean-burn limit. In this work, the potential of an ultralean PC SI engine for a decisive improvement of the thermal efficiency is presented by means of numerical and experimental analyses. The SI engine is experimentally investigated with and without the employment of the PC with the aim to analyze the real gain of this innovative combustion system. For both configurations, the engine is tested at various speeds, loads, and air-fuel ratios. A commercial gasoline fuel is directly injected into the Main Chamber (MC), while the PC is fed in a passive or active mode. Compressed Natural Gas (CNG) or Hydrogen (H2) is used in the actual case. A 1D model of the engine under study is implemented in a commercial modeling framework and is integrated with “in-house developed” sub-models for the simulation of the combustion and turbulence phenomena occurring in this unconventional engine. The numerical approach proves to reproduce the experimental data with good accuracy, without requiring any case-dependent tuning of the model constants. Both the numerical and experimental results show an improvement of the indicated thermal efficiency of the active PC, compared to the conventional ignition device, especially at high loads and low speeds. The injection of H2 into the PC leads to a significant benefit only with very lean mixtures. With the passive fueling of the PC, the lean-burn limit is less extended, with the consequent lower improvement potential for thermal efficiency

    {Physical Inertial Poser (PIP)}: {P}hysics-Aware Real-Time Human Motion Tracking From Sparse Inertial Sensors

    Get PDF

    The complete and fully assembled genome sequence of Aeromonas salmonicida subsp. pectinolytica and its comparative analysis with other Aeromonas species: investigation of the mobilome in environmental and pathogenic strains.

    Get PDF
    Due to the predominant usage of short-read sequencing to date, most bacterial genome sequences reported in the last years remain at the draft level. This precludes certain types of analyses, such as the in-depth analysis of genome plasticity. Here we report the finalized genome sequence of the environmental strain Aeromonas salmonicida subsp. pectinolytica 34mel, for which only a draft genome with 253 contigs is currently available. Successful completion of the transposon-rich genome critically depended on the PacBio long read sequencing technology. Using finalized genome sequences of A. salmonicida subsp. pectinolytica and other Aeromonads, we report the detailed analysis of the transposon composition of these bacterial species. Mobilome evolution is exemplified by a complex transposon, which has shifted from pathogenicity-related to environmental-related gene content in A. salmonicida subsp. pectinolytica 34mel. Obtaining the complete, circular genome of A. salmonicida subsp. pectinolytica allowed us to perform an in-depth analysis of its mobilome. We demonstrate the mobilome-dependent evolution of this strain's genetic profile from pathogenic to environmental
    corecore