1,422 research outputs found

    Evaluation of Dr. Szirmai's method of treating thrombosis with neomyograms resp. neomyographs

    Get PDF
    Neomyographic examinations were made by the authors on 28 patients. The extent of reconvalescence was measured on the basis of changes in the values recorded by the myograms taken before and after the treatment.</p

    The isolated neutron star X-ray pulsars RX J0420.0–5022 and RX J0806.4–4123 : new X-ray and optical observations

    Get PDF
    We report on the analysis of new X-ray data obtained with XMM-Newton and Chandra from two ROSAT-discovered X-ray dim isolated neutron stars (XDINs). RX J0806.4−4123 was observed with XMM-Newton in April 2003, 2.5 years after the first observation. The EPIC-pn data confirm that this object is an X-ray pulsar with 11.371 s neutron star spin period. The X-ray spectrum is consistent with absorbed black-body emission with a temperature kT = 96 eV and N H = 4 × 10 19 cm −2 without significant changes between the two observations. Four XMM-Newton observations of RX J0420.0−5022 between December 2002 and July 2003 did not confirm the 22.7 s pulsations originally indicated in ROSAT data, but clearly reveal a 3.453 s period. A fit to the X-ray spectrum using an absorbed black-body model yields kT = 45 eV, the lowest value found from the small group of XDINs and N H = 1.0 × 10 20 cm −2. Including a broad absorption line improves the quality of the spectral fits considerably for both objects and may indicate the presence of absorption features similar to those reported from RBS1223, RX J1605.3+3249 and RX J0720.4−3125. For both targets we derive accurate X-ray positions from the Chandra data and present an optical counterpart candidate for RX J0420.0−5022 with B = 26.6 ± 0.3 mag from VLT imaging

    RXJ0123.4-7321, a Be/X-ray binary in the wing of the SMC

    Full text link
    To confirm faint Be/X-ray binary candidates from the XMM-Newton survey of the Small Magellanic Cloud, we searched for X-ray outbursts in archival ROSAT observations. We found that RXJ0123.4-7321 was much brighter when detected with ROSAT than seen 16 years later by XMM-Newton. We analysed the ROSAT observations and the OGLE I-band light curve of the optical counterpart to investigate the nature of the system. High long-term variability in the X-ray flux of a factor of ~150 was found between the ROSAT and XMM-Newton detections, indicating strong outburst activity during the ROSAT observations. The I-band light curve reveals long-term variability and regular outbursts with a period of (119.9+-2.5) days indicating the orbital period of the binary system. The large X-ray flux variations and the properties of the optical counterpart confirm RXJ0123.4-7321 as a new Be/X-ray binary in the wing of the Small Magellanic Cloud.Comment: 5 pages, 8 figures, accepted for publication in A&

    Multi-wavelength properties of IGR J05007-7047 (LXP 38.55) and identification as a Be X-ray binary pulsar in the LMC

    Full text link
    We report on the results of a \sim40 d multi-wavelength monitoring of the Be X-ray binary system IGR J05007-7047 (LXP 38.55). During that period the system was monitored in the X-rays using the Swift telescope and in the optical with multiple instruments. When the X-ray luminosity exceeded 103610^{36} erg/s we triggered an XMM-Newton ToO observation. Timing analysis of the photon events collected during the XMM-Newton observation reveals coherent X-ray pulsations with a period of 38.551(3) s (1 {\sigma}), making it the 17th^{th} known high-mass X-ray binary pulsar in the LMC. During the outburst, the X-ray spectrum is fitted best with a model composed of an absorbed power law (Γ=0.63\Gamma =0.63) plus a high-temperature black-body (kT \sim 2 keV) component. By analysing \sim12 yr of available OGLE optical data we derived a 30.776(5) d optical period, confirming the previously reported X-ray period of the system as its orbital period. During our X-ray monitoring the system showed limited optical variability while its IR flux varied in phase with the X-ray luminosity, which implies the presence of a disk-like component adding cooler light to the spectral energy distribution of the system.Comment: 11 pages, 11 figures, Accepted for publication in MNRA

    A Probable Optical Counterpart for the Isolated Neutron Star RX J1308.6+2127

    Full text link
    Using a very deep observation with HST/STIS, we have searched for an optical counterpart to the nearby radio-quiet isolated neutron star RX J1308.6+2127 (RBS 1223). We have identified a single object in the 90% Chandra error circle that we believe to be the optical counterpart. This object has m50CCD=28.56±0.13m_{50CCD}=28.56\pm0.13 mag, which translates approximately to an unabsorbed flux of Fλ=(1.7±0.3)e20F_{\lambda}=(1.7 \pm 0.3)e-20 ergs/s/cm^2/A at 5150 A or an X-ray-to-optical flux ratio of log(fX/fopt)=4.9log(f_X/f_opt)=4.9. This flux is a factor of 5\approx 5 above the extrapolation of the black-body fit to the X-ray spectrum, consistent with the optical spectra of other isolated neutron stars. Without color information we cannot conclude that this source is indeed the counterpart of RX J1308.6+2127. If not, then the counterpart must have m50CCD>29.6m_{50CCD} > 29.6 mag, corresponding to a flux that is barely consistent with the extrapolation of the black-body fit to the X-ray spectrum.Comment: 4 pages, 2 figures. Uses emulateapj5.sty, onecolfloat5.sty. Accepted by ApJ Letter

    A study of the long term variability of RX J1856.5-3754 with XMM-Newton

    Full text link
    We report on a detailed spectral analysis of all the available XMM-Newton data of RX J1856.5-3754, the brightest and most extensively observed nearby, thermally emitting neutron star. Very small variations (~1-2%) in the single-blackbody temperature are detected, but are probably due to an instrumental effect, since they correlate with the position of the source on the detector. Restricting the analysis to a homogeneous subset of observations, with the source at the same detector position, we place strong limits on possible spectral or flux variations from March 2005 to present-day. A slightly higher temperature (kT~61.5 eV, compared to the average value kT~61 eV) was instead measured in April 2002. If this difference is not of instrumental origin, it implies a rate of variation of about 0.15 eV/yr between April 2002 and March 2005. The high-statistics spectrum from the selected observations is well fit by the sum of two blackbody models, which extrapolate to an optical flux level in agreement with the observed value.Comment: 4 pages, to appear in the proceedings of the ERPM conference, Zielona Gora, April 201

    Timing and spectral studies of the transient X-ray pulsar EXO 053109-6609.2 with ASCA and Beppo-SAX

    Full text link
    We report timing and spectral properties of the transient Be X-ray pulsar EXO 053109--6609.2 studied using observations made with the ASCA and BeppoSAX observatories. Though there must have been at least one spin-down episode of the pulsar since its discovery, the new pulse period measurements show a monotonic spin-up trend since 1996. The pulse profile is found to have marginal energy dependence. There is also evidence for strong luminosity dependence of the pulse profile, a single peaked profile at low luminosity that changes to a double peaked profile at high luminosity. This suggests a change in the accretion pattern at certain luminosity level. The X-ray spectrum is found to consist of a simple power-law with photon index in the range of 0.4--0.8. At high intensity level the spectrum also shows presence of weak iron emission line.Comment: 12 pages, 8 figures, Accepted for publication in Ap

    INTEGRAL deep observations of the Small Magellanic Cloud

    Full text link
    Deep observations of the Small Magellanic Cloud (SMC) and region were carried out in the hard X-ray band by the INTEGRAL observatory in 2008-2009. The field of view of the instrument permitted simultaneous coverage of the entire SMC and the eastern end of the Magellanic Bridge. In total, INTEGRAL detected seven sources in the SMC and five in the Magellanic Bridge; the majority of the sources were previously unknown systems. Several of the new sources were detected undergoing bright X- ray outbursts and all the sources exhibited transient behaviour except the supergiant system SMC X-1. They are all thought to be High Mass X-ray Binary (HMXB) systems in which the compact object is a neutron star.Comment: 7 pages, 10 figures Accepted for publication in MNRA
    corecore