105 research outputs found

    Intact and subunit-specific analysis of bispecific antibodies by sheathless CE-MS

    Get PDF
    Bispecific antibodies (BsAb) are next-generation, antibody-based pharmaceuticals which come with a great functional versatility and often a vast structural heterogeneity. Although engineering of the primary sequence of BsAbs guides the proper pairing of the different chains, several side products can often be observed contributing to the macroheterogeneity of these products. Furthermore, changes in the amino acid sequence can result in different protein modifications which can affect the properties of the antibody and further increase the structural complexity. A multi-methods approach can be used for the characterization of their heterogeneity but new analytical strategies are needed for a more accurate and in-depth analysis.Here, we present a combination of intact antibody and subunit-specific mass measurements using sheathless capillary electrophoresis-mass spectrometry for assessing the macro- and microheterogeneity of BsAbs. Two homologous BsAbs with the same bispecificity but slightly different amino acid sequences were analyzed. Intact measurements were performed using a positively coated capillary and a background electrolyte (BGE) consisting of 3% acetic acid. For intact BsAbs, the separation permitted the characterization of free light chains, homo- and heterodimers as well as incomplete assemblies. For subunit-specific measurements, BsAbs were hinge region cleaved using two different enzymes (SpeB and IdeS) followed by disulfide-bond reduction. The six different subunits (Lc1, Lc2, Fd'1, Fd'2, (Fc/2)1 and (Fc/2)2) were separated using the same positively-coated capillary and a BGE consisting of 20% acetic acid and 10% methanol. Mass measurements of hinge region cleaved antibodies were performed at isotopic resolution (resolving power 140000 at m/z 1100) for a more confident analysis of low abundance proteoforms. For both BsAbs several proteoforms with e.g. pyroglutamic acid (Pyro-Glu) or glycation which could not be properly assigned at the intact level, were accurately determined in the subunits showing the complementarity of both approaches. (C) 2020 Elsevier B.V. All rights reserved.Proteomic

    Affinity capillary electrophoresis-mass spectrometry as a tool to unravel proteoform-specific antibody-receptor interactions

    Get PDF
    Monoclonal antibody (mAb) pharmaceuticals consist of a plethora of different proteoforms with different functional characteristics, including pharmacokinetics and pharmacodynamics, requiring their individual assessment. Current binding techniques do not distinguish between coexisting proteoforms requiring tedious production of enriched proteoforms. Here, we have developed an approach based on mobility shift-affinity capillary electrophoresis-mass spectrometry (ACE-MS), which permitted us to determine the binding of coexisting mAb proteoforms to Fc receptors (FcRs). For high-sensitivity MS analysis, we used a sheathless interface providing adequate mAb sensitivity allowing functional characterization of mAbs with a high sensitivity and dynamic range. As a model system, we focused on the interaction with the neonatal FcR (FcRn), which determines the half-life of mAbs. Depending on the oxidation status, proteoforms exhibited different electrophoretic mobility shifts in the presence of FcRn, which could be used to determine their affinity. We confirmed the decrease of the FcRn affinity with antibody oxidation and observed a minor glycosylation effect, with higher affinities for galactosylated glycoforms. Next to relative binding, the approach permits the determination of individual K-D values in solution resulting in values of 422 and 139 nM for double-oxidized and non-oxidized variants. Hyphenation with native MS provides unique capabilities for simultaneous heterogeneity assessment for mAbs, FcRn, and complexes formed. The latter provides information on binding stoichiometry revealing 1:1 and 1:2 for antibody/FcRn complexes. The use of differently engineered Fc-only constructs allowed distinguishing between symmetric and asymmetric binding. The approach opens up unique possibilities for proteoform-resolved antibody binding studies to FcRn and can be extended to other FcRs and protein interactions.Proteomic

    Characterization of high-molecular weight by-products in the production of a trivalent bispecific 2+1 heterodimeric antibody

    Get PDF
    The development of increasingly complex antibody formats, such as bispecifics, can lead to the formation of increasingly complex high- and low-molecular-weight by-products. Here, we focus on the characterization of high molecular weight species (HMWs) representing the highest complexity of size variants. Standard methods used for product release, such as size exclusion chromatography (SEC), can separate HMW by-products from the main product, but cannot distinguish smaller changes in mass. Here, for the identification of the diverse and complex HMW variants of a trivalent bispecific CrossMAb antibody, offline fractionation, as well as production of HMW by-products combined with comprehensive analytical testing, was applied. Furthermore, HMW variants were analyzed regarding their chemical binding nature and tested in functional assays regarding changes in potency of the variants. Changes in potency were explained by detailed characterization using mass photometry, SDS-PAGE analysis, native mass spectrometry (MS) coupled to SEC and bottom-up proteomics. We identified a major portion of the HMW by-products to be non-covalently linked, leading to dissociation and changes in activity. We also identified and localized high heterogeneity of a by-product of concern and applied a CD3 affinity column coupled to native MS to annotate unexpected by-products. We present here a multi-method approach for the characterization of complex HMW by-products. A better understanding of these by-products is beneficial to guide analytical method development and proper specification setting for therapeutic bispecific antibodies to ensure constant efficacy and patient safety of the product through the assessment of by-products

    Cysteine aminoethylation enables the site-specific glycosylation analysis of recombinant human erythropoietin using trypsin

    Get PDF
    Recombinant human erythropoietin (rhEPO) is an important biopharmaceutical for which glycosylation is a critical quality attribute. Therefore, robust analytical methods are needed for the in-depth characterization of rhEPO glycosylation. Currently, the protease GluC is widely established for the site-specific glycosylation analysis of rhEPO. However, this enzyme shows disadvantages, such as its specificity and the characteristics of the resulting (glyco)peptides. The use of trypsin, the gold standard protease in proteomics, as the sole protease for rhEPO is compromised, as no natural tryptic cleavage site is located between the glycosylation sites Asn24 and Asn38. Here, cysteine aminoethylation using 2-bromoethylamine was applied as an alternative alkylation strategy to introduce artificial tryptic cleavage sites at Cys29 and Cys33 in rhEPO. The (glyco)peptides resulting from a subsequent digestion using trypsin were analyzed by reverse-phase liquid chromatography-mass spectrometry. The new trypsin-based workflow was easily implemented by adapting the alkylation step in a conventional workflow and was directly compared to an established approach using GluC. The new method shows an improved specificity, a significantly reduced chromatogram complexity, allows for shorter analysis times, and simplifies data evaluation. Furthermore, the method allows for the monitoring of additional attributes, such as oxidation and deamidation at specific sites in parallel to the site-specific glycosylation analysis of rhEPO.Proteomic

    Monitoring glycation levels of a bispecific monoclonal antibody at subunit level by ultrahigh resolution MALDI FT-ICR mass spectrometry

    Get PDF
    Bispecific monoclonal antibodies (BsAbs) are engineered proteins with multiple functionalities and properties. The "bi-specificity" of these complex biopharmaceuticals is a key characteristic for the development of novel and more effective therapeutic strategies. The high structural complexity of BsAbs poses a challenge to the analytical methods needed for their characterization. Modifications of the BsAb structure, resulting from enzymatic and non-enzymatic processes, further complicate the analysis. An important example of the latter type of modification is glycation, which can occur in the manufacturing process, during storage in formulation or in vivo after application of the drug. Glycation affects the structure, function and stability of monoclonal antibodies, and consequently, detailed analysis of glycation levels is required. Mass spectrometry (MS) plays a key role in the structural characterization of monoclonal antibodies and top-down, middle-up and middle-down MS approaches are increasingly used for the analysis of modifications. Here, we apply a novel middle-up strategy, based on IdeS digestion and matrix-assisted laser desorption ionization (MALDI) Fourier transform ion cyclotron resonance (FT-ICR) MS, to analyze all six different BsAb subunits in a single high-resolution mass spectrum, namely two light chains, two half fragment crystallizable regions and two Fd’ regions, thus avoiding upfront chromatography. This method was used to monitor glycation changes during a 168h forced-glycation experiment. In addition, hot spot glycation sites were localized using top-down and middle-down MALDI-in-source decay FT-ICR MS, which provided complementary information compared to standard bottom-up MS

    Prognostic Value of Plasma B-Type Natriuretic Peptide in the Long-Term Follow-up of Patients With Transposition of the Great Arteries With Morphologic Right Systemic Ventricle After Atrial Switch Operation.

    No full text
    B-type natriuretic peptide (BNP) is an established marker for heart failure assessment, but the prognostic quality of BNP after atrial switch operation (ASO) has not yet been elucidated.In 89 patients (median age, 24 years; range, 15-35 years) after ASO, BNP was measured. During a 48-months follow-up we focused on critical cardiac events, defined as decompensation, sudden cardiac death or need for heart transplantation. BNP was considerably lower in 81 patients in functional class (FC) I/II (median, 35 pg/ml; range, 3-586 pg/ml) than in 6 patients in FC III/IV (median, 246 pg/ml; range, 14-1,150 pg/ml, P0.99, P<0.001). The cut-off was 85 pg/ml (sensitivity, 88%; specificity, 85%). Additionally, estimated event-free-survival was longer after Senning than after Mustard procedure (P<=0.017). There was no significant difference in outcome between patients with simple or complex TGA with regard to occurrence of critical events.BNP is a sensitive and specific prognostic marker for critical cardiac events after ASO. (Circ J 2015; 79: 2677-2681)

    Messanordnung und Verfahren zum Lenken und Detektieren von Partikeln

    No full text
    A measuring arrangement includes an electrostatic concentrator, a surface and an imaging sensor which are configured to detect particles
    • …
    corecore