823 research outputs found

    Effect of hydrogen adsorption on the quasiparticle spectra of graphene

    Full text link
    We use the non-interacting tight-binding model to study the effect of isolated hydrogen adsorbates on the quasiparticle spectra of single-layer graphene. Using the Green's function approach, we obtain analytic expressions for the local density of states and the spectral function of hydrogen-doped graphene, which are also numerically evaluated and plotted. Our results are relevant for the interpretation of scanning tunneling microscopy and angle-resolved photoemission spectroscopy data of functionalized graphene.Comment: 4 pages, 3 figures, minor corrections to tex

    Oxidative Stress Resistance: A Robust Correlated Response to Selection in Extended Longevity Lines of \u3ci\u3eDrosophila melanogaster\u3c/i\u3e?

    Get PDF
    Stress resistance is associated with longevity in Drosophila melanogaster and other model organisms used for genetic research. The present study tests for oxidative stress resistance in one set of lines selected for late-life reproduction and extended longevity. Both females and males from the selected lines were appreciably more resistant to oxidative stress than were flies from the control lines. A relative increase in oxidative stress resistance is a correlated response to selection in this laboratory selection experiment. Increased oxidative stress resistance appears to be a relatively robust correlated response to laboratory selection for late-life reproduction and extended longevity

    Quasi-freestanding and single-atom thick layer of hexagonal boron nitride as a substrate for graphene synthesis

    Full text link
    We demonstrate that freeing a single-atom thick layer of hexagonal boron nitride (hbn) from tight chemical bonding to a Ni(111) thin film grown on a W(110) substrate can be achieved by intercalation of Au atoms into the interface. This process has been systematically investigated using angle-resolved photoemission spectroscopy, X-ray photoemission and absorption techniques. It has been demonstrated that the transition of the hbn layer from the "rigid" into the "quasi-freestanding" state is accompanied by a change of its lattice constant. Using chemical vapor deposition, graphene has been successfully synthesized on the insulating, quasi-freestanding hbn monolayer. We anticipate that the in situ synthesized weakly interacting graphene/hbn double layered system could be further developed for technological applications and may provide perspectives for further inquiry into the unusual electronic properties of graphene.Comment: in print in Phys. Rev.

    Light-Trap: A SiPM Upgrade for Very High Energy Astronomy and Beyond

    Full text link
    With the development of the Imaging Atmospheric Cherenkov Technique (IACT), Gamma-ray astronomy has become one of the most interesting and productive fields of astrophysics. Current IACT telescope arrays (MAGIC, H.E.S.S, VERITAS) use photomultiplier tubes (PMTs) to detect the optical/near-UV Cherenkov radiation emitted due to the interaction of gamma rays with the atmosphere. For the next generation of IACT experiments, the possibility of replacing the PMTs with Silicon photomultipliers (SiPMs) is being studied. Among the main drawbacks of SiPMs are their limited active area (leading to an increase in the cost and complexity of the camera readout) and their sensitivity to unwanted wavelengths. Here we propose a novel method to build a relatively low-cost pixel consisting of a SiPM attached to a PMMA disc doped with a wavelength shifter. This pixel collects light over a much larger area than a single standard SiPM and improves sensitivity to near-UV light while simultaneously rejecting background. We describe the design of a detector that could also have applications in other fields where detection area and cost are crucial. We present results of simulations and laboratory measurements of a pixel prototype and from field tests performed with a 7-pixel cluster installed in a MAGIC telescope camera.Comment: Proceedings of the 35th International Cosmic Ray Conference (ICRC 2017), Bexco, Busan, Korea. Id:81

    Interventions addressing the adolescent HIV continuum of care in South Africa: a systematic review and modified Delphi analysis

    Get PDF
    INTRODUCTION: Compared with adults, adolescents in South Africa have larger gaps at each step of the HIV continuum of care resulting in low levels of viral suppression. METHODS: We conducted a systematic review and modified Delphi analysis of interventions addressing the HIV continuum of care for adolescents in South Africa. We searched PubMed, Science Direct, and Google Scholar and online conference proceedings from the International AIDS Society, the International AIDS Conference, and the Conference on Retrovirology and Opportunistic Infections from 1 January 2010 to 30 September 2020. We then conducted a modified Delphi analysis with 29 researchers involved in the National Institutes of Health's Fogarty International-supported Adolescent HIV Implementation Science Alliance-South Africa to evaluate interventions for efficacy, feasibility and potential for scale-up. RESULTS: We identified nine initial published articles containing interventions addressing the adolescent HIV continuum of care in South Africa, including five interventions focused on HIV diagnosis, two on antiretroviral therapy adherence and two on retention in care. No studies addressed linkage to care or transition from paediatric to adult care. Two studies discussed intervention costs. In-home and HIV self-testing, community-based adherence support, and provision of adolescent-friendly services were the most impactful and scalable interventions addressing the adolescent HIV continuum of care. CONCLUSION: Future interventions should work comprehensively across the adolescent HIV continuum of care and be tailored to the specific needs of adolescents

    Making graphene nanoribbons photoluminescent

    Get PDF
    We demonstrate the alignment-preserving transfer of parallel graphene nanoribbons (GNRs) onto insulating substrates. The photophysics of such samples is characterized by polarized Raman and photoluminescence (PL) spectroscopies. The Raman scattered light and the PL are polarized along the GNR axis. The Raman cross section as a function of excitation energy has distinct excitonic peaks associated with transitions between the one-dimensional parabolic subbands. We find that the PL of GNRs is intrinsically low but can be strongly enhanced by blue laser irradiation in ambient conditions or hydrogenation in ultrahigh vacuum. These functionalization routes cause the formation of sp3 defects in GNRs. We demonstrate the laser writing of luminescent patterns in GNR films for maskless lithography by the controlled generation of defects. Our findings set the stage for further exploration of the optical properties of GNRs on insulating substrates and in device geometries
    corecore