5 research outputs found

    Baroreflex sensitivity differs among same strain Wistar rats from the same laboratory

    Get PDF
    Previous studies showed that a proportion of normotensive Sprague-Dawley rats spontaneously exhibit lower baroreflex sensitivity. However, investigations have not yet been carried out on Wistar rats. We aimed to compare baroreflex sensitivity among rats from the same strain and the same laboratory. Male Wistar normotensive rats (300–400g) were studied. Cannulas were inserted into the abdominal aortic artery through the right femoral artery to measure mean arterial pressure and heart rate. Baroreflex was calculated as the derivative of the variation of heart rate in function of the mean arterial pressure variation (ΔHR/ΔMAP) tested with a depressor dose of sodium nitroprusside (50 µg/kg) and with a pressor dose of phenylephrine (8µg/kg) in the right femoral venous approach through an inserted cannula. We divided the rats into four groups: i) high bradycardic baroreflex, baroreflex gain less than −2 tested with phenylephrine; ii) low bradycardic baroreflex, baroreflex gain between −1 and −2 tested with phenylephrine; iii) high tachycardic baroreflex, baroreflex gain less than −3 tested with sodium nitroprusside; and iv) low tachycardic baroreflex, baroreflex gain between −1 and −3 tested with sodium nitroprusside. Approximately 71% of the rats presented a decrease in bradycardic reflex while around half showed an increase in tachycardic reflex. No significant changes in basal mean arterial pressure and heart rate, tachycardic and bradycardic peak and heart rate range were observed. There was a significant change in baroreflex sensitivity among rats from the same strain and the same laboratory

    Soils of the cryolithozone and the traditional land use of the indigenous populations of North-Eastern European Russia and Western Siberia: research problem statement

    No full text
    In this paper, ethnographic material on the Komi reindeer herders of eastern Bolshezemelskaya tundra and the Nenets reindeer herders of southern Gydan Peninsula is used to show how soil processes, which take place in the cryolithozone, can affect the life and economic practices of reindeer herding groups. It is demonstrated that such an impact can be direct as well as indirect. The direct impact consists, for example, in the influence of the permafrost on soil denaturing and, therefore, on the thixotropic properties of the soil. This affects the probability and the speed of soil turning into mud under the mechanical influence of reindeer trampling. Herders have to consider this probability and consider speeds of movement of the herd when they choose a camping place, plan the duration of their stay in this place and perform certain herding operations (e.g. rounding up the herd). The indirect impact continues through the permafrost’s role in the microlandscape formation as well as through its influence on vegetation. The both play an important role in determining reindeer behaviour and affect the way tundra can be navigated on a reindeer sledge. The manner and degree to which these impacts influence reindeer herding practices depend on the herding technology, which differs between the two ethnic groups. Another example of the indirect impact can be seen in the huge role thermokarst processes play in the formation and change of tundra aquasystems. The formation of thermokarst lakes, their draining and formation of dry lake reservoirs with their typical hyperproductivity of biomass poses both challenges and new possibilities for reindeer herding. The relationship between permafrost soil processes and reindeer herding practices should be considered in order to allow a more accurate assessment of the consequences ongoing climatic change can have for the life and economy of northern aboriginals. Therefore, a study of this relationship represents a valid scientific topic crossing the borders between biology, geology and cultural anthropology

    Prevalence Estimates of Amyloid Abnormality Across the Alzheimer Disease Clinical Spectrum.

    No full text
    One characteristic histopathological event in Alzheimer disease (AD) is cerebral amyloid aggregation, which can be detected by biomarkers in cerebrospinal fluid (CSF) and on positron emission tomography (PET) scans. Prevalence estimates of amyloid pathology are important for health care planning and clinical trial design. To estimate the prevalence of amyloid abnormality in persons with normal cognition, subjective cognitive decline, mild cognitive impairment, or clinical AD dementia and to examine the potential implications of cutoff methods, biomarker modality (CSF or PET), age, sex, APOE genotype, educational level, geographical region, and dementia severity for these estimates. This cross-sectional, individual-participant pooled study included participants from 85 Amyloid Biomarker Study cohorts. Data collection was performed from January 1, 2013, to December 31, 2020. Participants had normal cognition, subjective cognitive decline, mild cognitive impairment, or clinical AD dementia. Normal cognition and subjective cognitive decline were defined by normal scores on cognitive tests, with the presence of cognitive complaints defining subjective cognitive decline. Mild cognitive impairment and clinical AD dementia were diagnosed according to published criteria. Alzheimer disease biomarkers detected on PET or in CSF. Amyloid measurements were dichotomized as normal or abnormal using cohort-provided cutoffs for CSF or PET or by visual reading for PET. Adjusted data-driven cutoffs for abnormal amyloid were calculated using gaussian mixture modeling. Prevalence of amyloid abnormality was estimated according to age, sex, cognitive status, biomarker modality, APOE carrier status, educational level, geographical location, and dementia severity using generalized estimating equations. Among the 19 097 participants (mean [SD] age, 69.1 [9.8] years; 10 148 women [53.1%]) included, 10 139 (53.1%) underwent an amyloid PET scan and 8958 (46.9%) had an amyloid CSF measurement. Using cohort-provided cutoffs, amyloid abnormality prevalences were similar to 2015 estimates for individuals without dementia and were similar across PET- and CSF-based estimates (24%; 95% CI, 21%-28%) in participants with normal cognition, 27% (95% CI, 21%-33%) in participants with subjective cognitive decline, and 51% (95% CI, 46%-56%) in participants with mild cognitive impairment, whereas for clinical AD dementia the estimates were higher for PET than CSF (87% vs 79%; mean difference, 8%; 95% CI, 0%-16%; P = .04). Gaussian mixture modeling-based cutoffs for amyloid measures on PET scans were similar to cohort-provided cutoffs and were not adjusted. Adjusted CSF cutoffs resulted in a 10% higher amyloid abnormality prevalence than PET-based estimates in persons with normal cognition (mean difference, 9%; 95% CI, 3%-15%; P = .004), subjective cognitive decline (9%; 95% CI, 3%-15%; P = .005), and mild cognitive impairment (10%; 95% CI, 3%-17%; P = .004), whereas the estimates were comparable in persons with clinical AD dementia (mean difference, 4%; 95% CI, -2% to 9%; P = .18). This study found that CSF-based estimates using adjusted data-driven cutoffs were up to 10% higher than PET-based estimates in people without dementia, whereas the results were similar among people with dementia. This finding suggests that preclinical and prodromal AD may be more prevalent than previously estimated, which has important implications for clinical trial recruitment strategies and health care planning policies

    Prevalence Estimates of Amyloid Abnormality Across the Alzheimer Disease Clinical Spectrum

    No full text
    Importance: One characteristic histopathological event in Alzheimer disease (AD) is cerebral amyloid aggregation, which can be detected by biomarkers in cerebrospinal fluid (CSF) and on positron emission tomography (PET) scans. Prevalence estimates of amyloid pathology are important for health care planning and clinical trial design. Objective: To estimate the prevalence of amyloid abnormality in persons with normal cognition, subjective cognitive decline, mild cognitive impairment, or clinical AD dementia and to examine the potential implications of cutoff methods, biomarker modality (CSF or PET), age, sex, APOE genotype, educational level, geographical region, and dementia severity for these estimates. Design, Setting, and Participants: This cross-sectional, individual-participant pooled study included participants from 85 Amyloid Biomarker Study cohorts. Data collection was performed from January 1, 2013, to December 31, 2020. Participants had normal cognition, subjective cognitive decline, mild cognitive impairment, or clinical AD dementia. Normal cognition and subjective cognitive decline were defined by normal scores on cognitive tests, with the presence of cognitive complaints defining subjective cognitive decline. Mild cognitive impairment and clinical AD dementia were diagnosed according to published criteria. Exposures: Alzheimer disease biomarkers detected on PET or in CSF. Main Outcomes and Measures: Amyloid measurements were dichotomized as normal or abnormal using cohort-provided cutoffs for CSF or PET or by visual reading for PET. Adjusted data-driven cutoffs for abnormal amyloid were calculated using gaussian mixture modeling. Prevalence of amyloid abnormality was estimated according to age, sex, cognitive status, biomarker modality, APOE carrier status, educational level, geographical location, and dementia severity using generalized estimating equations. Results: Among the 19097 participants (mean [SD] age, 69.1 [9.8] years; 10148 women [53.1%]) included, 10139 (53.1%) underwent an amyloid PET scan and 8958 (46.9%) had an amyloid CSF measurement. Using cohort-provided cutoffs, amyloid abnormality prevalences were similar to 2015 estimates for individuals without dementia and were similar across PET- and CSF-based estimates (24%; 95% CI, 21%-28%) in participants with normal cognition, 27% (95% CI, 21%-33%) in participants with subjective cognitive decline, and 51% (95% CI, 46%-56%) in participants with mild cognitive impairment, whereas for clinical AD dementia the estimates were higher for PET than CSF (87% vs 79%; mean difference, 8%; 95% CI, 0%-16%; P =.04). Gaussian mixture modeling-based cutoffs for amyloid measures on PET scans were similar to cohort-provided cutoffs and were not adjusted. Adjusted CSF cutoffs resulted in a 10% higher amyloid abnormality prevalence than PET-based estimates in persons with normal cognition (mean difference, 9%; 95% CI, 3%-15%; P =.004), subjective cognitive decline (9%; 95% CI, 3%-15%; P =.005), and mild cognitive impairment (10%; 95% CI, 3%-17%; P =.004), whereas the estimates were comparable in persons with clinical AD dementia (mean difference, 4%; 95% CI, -2% to 9%; P =.18). Conclusions and Relevance: This study found that CSF-based estimates using adjusted data-driven cutoffs were up to 10% higher than PET-based estimates in people without dementia, whereas the results were similar among people with dementia. This finding suggests that preclinical and prodromal AD may be more prevalent than previously estimated, which has important implications for clinical trial recruitment strategies and health care planning policies. © 2022 American Medical Association. All rights reserved
    corecore