6 research outputs found

    Trauma informed restorative justice through community based sociotherapy in Rwanda

    No full text
    Restorative justice, when trauma informed, has a great potential to effectively contribute to sustainable peace in post conflict settings. An evidence based example of a programme illustrating such effect is community based sociotherapy in Rwanda. This article documents what this programme has achieved in terms of restorative justice, following the closure of Gacaca, the community based justice system that was in operation in Rwanda nationwide from 2005 to 2012. In total, 155 respondents to 23 focus group discussions and 39 individual interviewees, including former participants of sociotherapy, leaders on sector and district level and government representatives at national level, participated in outcome studies that inform this article. The majority of respondents indicated that sociotherapy generates a process of genuine healing and reconciliation, resulting in peacebuilding at family and community level, as well as wider social change. The challenge is how to scale-up sociotherapy interventions without losing trauma informed characteristics

    A chimeric vaccine protects farmed saltwater crocodiles from West Nile virus-induced skin lesions

    No full text
    West Nile virus (WNV) causes skin lesions in farmed crocodiles leading to the depreciation of the value of their hides and significant economic losses. However, there is no commercially available vaccine designed for use in crocodilians against WNV. We tested chimeric virus vaccines composed of the non-structural genes of the insect-specific flavivirus Binjari virus (BinJV) and genes encoding the structural proteins of WNV. The BinJV/WNV chimera, is antigenically similar to wild-type WNV but replication-defective in vertebrates. Intramuscular injection of two doses of BinJV/WNV in hatchling saltwater crocodiles (Crocodylus porosus) elicited a robust neutralising antibody response and conferred protection against viremia and skin lesions after challenge with WNV. In contrast, mock-vaccinated crocodiles became viraemic and 22.2% exhibited WNV-induced lesions. This suggests that the BinJV/WNV chimera is a safe and efficacious vaccine for preventing WNV-induced skin lesions in farmed crocodilians

    NS4/5 mutations enhance flavivirus Bamaga virus infectivity and pathogenicity in vitro and in vivo

    No full text
    Flaviviruses such as yellow fever, dengue or Zika viruses are responsible for significant human and veterinary diseases worldwide. These viruses contain an RNA genome, prone to mutations, which enhances their potential to emerge as pathogens. Bamaga virus (BgV) is a mosquito-borne flavivirus in the yellow fever virus group that we have previously shown to be host-restricted in vertebrates and horizontally transmissible by Culex mosquitoes. Here, we aimed to characterise BgV host-restriction and to investigate the mechanisms involved. We showed that BgV could not replicate in a wide range of vertebrate cell lines and animal species. We determined that the mechanisms involved in BgV host-restriction were independent of the type-1 interferon response and RNAse L activity. Using a BgV infectious clone and two chimeric viruses generated as hybrids between BgV and West Nile virus, we demonstrated that BgV host-restriction occurred post-cell entry. Notably, BgV host-restriction was shown to be temperature-dependent, as BgV replicated in all vertebrate cell lines at 34°C but only in a subset at 37°C. Serial passaging of BgV in Vero cells resulted in adaptive mutants capable of efficient replication at 37°C. The identified mutations resulted in amino acid substitutions in NS4A-S124F, NS4B-N244K and NS5-G2C, all occurring close to a viral protease cleavage site (NS4A/2K and NS4B/NS5). These mutations were reverse engineered into infectious clones of BgV, which revealed that NS4B-N244K and NS5-G2C were sufficient to restore BgV replication in vertebrate cells at 37°C, while NS4A-S124F further increased replication efficiency. When these mutant viruses were injected into immunocompetent mice, alongside BgV and West Nile virus chimeras, infection and neurovirulence were enhanced as determined by clinical scores, seroconversion, micro-neutralisation, viremia, histopathology and immunohistochemistry, confirming the involvement of these residues in the attenuation of BgV. Our studies identify a new mechanism of host-restriction and attenuation of a mosquito-borne flavivirus

    Mosquito-independent transmission of West Nile virus in farmed saltwater crocodiles (Crocodylus porosus)

    No full text
    West Nile virus, Kunjin strain (WNVKUN) is endemic in Northern Australia, but rarely causes clinical disease in humans and horses. Recently, WNVKUN genomic material was detected in cutaneous lesions of farmed saltwater crocodiles (Crocodylus porosus), but live virus could not be isolated, begging the question of the pathogenesis of these lesions. Crocodile hatchlings were experimentally infected with either 105 (n = 10) or 104 (n = 11) TCID50-doses of WNVKUN and each group co-housed with six uninfected hatchlings in a mosquito-free facility. Seven hatchlings were mock-infected and housed separately. Each crocodile was rotationally examined and blood-sampled every third day over a 3-week period. Eleven animals, including three crocodiles developing typical skin lesions, were culled and sampled 21 days post-infection (dpi). The remaining hatchlings were blood-sampled fortnightly until experimental endpoint 87 dpi. All hatchlings remained free of overt clinical disease, apart from skin lesions, throughout the experiment. Viremia was detected by qRT-PCR in infected animals during 2-17 dpi and in-contact animals 11-21 dpi, indicating horizontal mosquito-independent transmission. Detection of viral genome in tank-water as well as oral and cloacal swabs, collected on multiple days, suggests that shedding into pen-water and subsequent mucosal infection is the most likely route. All inoculated animals and some in-contact animals developed virus-neutralizing antibodies detectable from 17 dpi. Virus-neutralizing antibody titers continued to increase in exposed animals until the experimental endpoint, suggestive of persisting viral antigen. However, no viral antigen was detected by immunohistochemistry in any tissue sample, including from skin and intestine. While this study confirmed that infection of saltwater crocodiles with WNVKUN was associated with the formation of skin lesions, we were unable to elucidate the pathogenesis of these lesions or the nidus of viral persistence. Our results nevertheless suggest that prevention of WNVKUN infection and induction of skin lesions in farmed crocodiles may require management of both mosquito-borne and water-borne viral transmission in addition to vaccination strategies
    corecore